""" heatmap demo """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from freeplot.base import FreePlot titles = ("S", "h", "a", "n") row_labels = ('c', 'u', 't', 'e') col_labels = ('l', 'r', 'i', 'g') # shape: 1, 4; figsize: 9, 2 fp = FreePlot((1, 4), (9, 2), titles=titles, dpi=100, sharey=True) for title in titles: data = np.random.rand(4, 4) df = pd.DataFrame(data, index=col_labels, columns=row_labels) fp.heatmap(df, index=title, annot=True, fmt=".4f", cbar=False, linewidth=0.5) fp.set(Xlabel="X") fp.set_label('Y', index=(0, 0), axis='y') fp.savefig("heatmap_demo.pdf", format="pdf", tight_layout=False) # plt.show()
import numpy as np import matplotlib.pyplot as plt import seaborn as sns from freeplot.base import FreePlot titles = ("S", "h", "a", "n") labels = ("sin", "cos", "x") fp = FreePlot((1, 4), (9.5, 2), titles=titles, dpi=100, sharey=True) nums = 20 x = np.linspace(-10, 10, nums) y1 = np.sin(x) y2 = np.cos(x) y3 = x ys = (y1, y2, y3) for title in titles: for i, y in enumerate(ys): y = y + np.random.randn(nums) fp.lineplot(x, y, index=title, label=labels[i]) fp.set_title(y=1.) fp.set_label("y", axis='y') fp.set(Xlabel="x") fp[0, 0].legend() # fp.savefig("line_demo.pdf", format="pdf", tight_layout=False) plt.show()
import numpy as np import matplotlib.pyplot as plt import seaborn as sns from freeplot.base import FreePlot from scipy.stats import multivariate_normal normal = multivariate_normal titles = ("S", "h", "a", "n") labels = ("sin", "cos", "x") # shape: 1, 4; figsize: 9.5, 2 fp = FreePlot((1, 4), (9.5, 2), titles=titles, dpi=100, sharey=True) nums = 100 means = ((0, 0), (5, 5), (-5, -5)) cov = (2, 1, 1) for title in titles: for i, mean in enumerate(means): data = normal.rvs(mean, cov[i], size=nums) fp.scatterplot(data[:, 0], data[:, 1], index=title, label=labels[i]) fp.set_title(y=1.) fp.set_label("Y", index=(0, 0), axis='y') fp.set_label("X", index=None, axis='x') fp[0, 0].legend() # fp.savefig("scatter_demo.pdf", format="pdf", tight_layout=False) plt.show()