示例#1
0
def classification_comparison_freq(dataset='reuters'):
    print '> Reading data..', dataset
    training_path = '../data/'+dataset+'/training_preprocessed'
    training_docs, training_labels = data.read_files(training_path)
    test_path = '../data/'+dataset+'/test_preprocessed'
    test_docs, test_labels = data.read_files(test_path)

    results = {}
    for metric in freq_representation.get_metrics():
        print '   ', metric,
        training_dicts = freq_representation.text_to_dict(training_docs, metric)
        test_dicts = freq_representation.text_to_dict(test_docs, metric)
        print '    dicst -> vectors'
        keys = set()
        for d in training_dicts + test_dicts:
            keys = keys.union(d.keys())
        print '    vocabulary size:', len(keys)
        training_rep = graph_representation.dicts_to_vectors(training_dicts, keys)
        test_rep = graph_representation.dicts_to_vectors(test_dicts, keys)
        reps = {'training':training_rep, 'test':test_rep}
        labels = {'training':training_labels, 'test':test_labels}
        score = evaluation.evaluate_classification(reps, labels, mode='split')
        results[metric] = score
        print score
    pp.pprint(results)
    s = 'classification comparison \nrepresentation: frequency\nresult:\n'+str(results)+'\n\n\n'
    data.write_to_file(s, 'output/comparison/classification')
    return results
示例#2
0
def classification_comparison_freq(dataset='reuters'):
    print '> Reading data..', dataset
    training_path = '../data/' + dataset + '/training_preprocessed'
    training_docs, training_labels = data.read_files(training_path)
    test_path = '../data/' + dataset + '/test_preprocessed'
    test_docs, test_labels = data.read_files(test_path)

    results = {}
    for metric in freq_representation.get_metrics():
        print '   ', metric,
        training_dicts = freq_representation.text_to_dict(
            training_docs, metric)
        test_dicts = freq_representation.text_to_dict(test_docs, metric)
        print '    dicst -> vectors'
        keys = set()
        for d in training_dicts + test_dicts:
            keys = keys.union(d.keys())
        print '    vocabulary size:', len(keys)
        training_rep = graph_representation.dicts_to_vectors(
            training_dicts, keys)
        test_rep = graph_representation.dicts_to_vectors(test_dicts, keys)
        reps = {'training': training_rep, 'test': test_rep}
        labels = {'training': training_labels, 'test': test_labels}
        score = evaluation.evaluate_classification(reps, labels, mode='split')
        results[metric] = score
        print score
    pp.pprint(results)
    s = 'classification comparison \nrepresentation: frequency\nresult:\n' + str(
        results) + '\n\n\n'
    data.write_to_file(s, 'output/comparison/classification')
    return results
示例#3
0
def term_centrality_study(doc='air/reports_text/2005/a05a0059.html', num=20):
    def _print_terms(cents, rep, num):
        ts = _top_cents(cents, num)
        terms = []
        for t in ts:
            terms.append(t[0])
        print rep + ' & ' + ', '.join(terms) + ' \\\\'

    def _top_cents(cents, num):
        return sorted(cents.iteritems(),
                      key=operator.itemgetter(1),
                      reverse=True)[0:num]

    def _calc_cents(g, metric, gcents=None):
        if gcents: icc = graph_representation.calculate_icc_dict(gcents)
        else: icc = None
        return graph_representation.graph_to_dict(g, metric, icc)

    import operator
    import dependency_experiments
    import co_occurrence_experiments

    dataset = 'air/reports'
    path = '../data/' + doc
    doc = data.read_file(path)

    metric = graph.GraphMetrics.DEGREE
    context = 'window'
    g = graph_representation.construct_cooccurrence_network(doc,
                                                            context=context)
    cents = _calc_cents(g, metric)
    _print_terms(cents, 'Co-occurrence TC', num)
    gcents = co_occurrence_experiments.retrieve_centralities(
        dataset, context, metric)
    cents = _calc_cents(g, metric, gcents)
    _print_terms(cents, 'Co-occurrence TC-ICC', num)

    metric = graph.GraphMetrics.EIGENVECTOR
    deps = data._text_to_dependencies(doc)
    g = graph_representation.construct_dependency_network(deps)
    cents = _calc_cents(g, metric)
    _print_terms(cents, 'Dependency TC', num)
    gcents = dependency_experiments.retrieve_centralities(dataset, metric)
    cents = _calc_cents(g, metric, gcents)
    _print_terms(cents, 'Dependency TC-ICC', num)

    fdict = freq_representation.text_to_dict(
        [doc], freq_representation.FrequencyMetrics.TF_IDF)[0]
    _print_terms(fdict, 'TF-IDF', num)

    fdict = freq_representation.text_to_dict(
        [doc], freq_representation.FrequencyMetrics.TF)[0]
    _print_terms(fdict, 'TF', num)
示例#4
0
def term_centrality_study(doc='air/reports_text/2005/a05a0059.html', num=20):
    def _print_terms(cents, rep, num):
        ts = _top_cents(cents, num)
        terms = []
        for t in ts:
            terms.append(t[0])
        print rep + ' & ' + ', '.join(terms) + ' \\\\'
    def _top_cents(cents,num):
        return sorted(cents.iteritems(), key = operator.itemgetter(1), reverse = True)[0:num]
    def _calc_cents(g, metric, gcents=None):
        if gcents: icc = graph_representation.calculate_icc_dict(gcents)
        else: icc = None
        return graph_representation.graph_to_dict(g, metric, icc)

    import operator
    import dependency_experiments
    import co_occurrence_experiments

    dataset = 'air/reports'
    path = '../data/'+doc
    doc = data.read_file(path)

    metric = graph.GraphMetrics.DEGREE
    context = 'window'
    g = graph_representation.construct_cooccurrence_network(doc, context=context)
    cents = _calc_cents(g, metric)
    _print_terms(cents, 'Co-occurrence TC', num)
    gcents = co_occurrence_experiments.retrieve_centralities(dataset, context, metric)
    cents = _calc_cents(g, metric, gcents)
    _print_terms(cents, 'Co-occurrence TC-ICC', num)

    metric = graph.GraphMetrics.EIGENVECTOR
    deps = data._text_to_dependencies(doc)
    g = graph_representation.construct_dependency_network(deps)
    cents = _calc_cents(g, metric)
    _print_terms(cents, 'Dependency TC', num)
    gcents = dependency_experiments.retrieve_centralities(dataset, metric)
    cents = _calc_cents(g, metric, gcents)
    _print_terms(cents, 'Dependency TC-ICC', num)

    fdict = freq_representation.text_to_dict([doc], freq_representation.FrequencyMetrics.TF_IDF)[0]
    _print_terms(fdict, 'TF-IDF', num)

    fdict = freq_representation.text_to_dict([doc], freq_representation.FrequencyMetrics.TF)[0]
    _print_terms(fdict, 'TF', num)