def test_tickerdata_to_dataframe(default_conf) -> None: """ Test Analyze.tickerdata_to_dataframe() method """ analyze = Analyze(default_conf) timerange = ((None, 'line'), None, -100) tick = load_tickerdata_file(None, 'BTC_UNITEST', 1, timerange=timerange) tickerlist = {'BTC_UNITEST': tick} data = analyze.tickerdata_to_dataframe(tickerlist) assert len(data['BTC_UNITEST']) == 100
def test_tickerdata_to_dataframe(default_conf) -> None: """ Test Analyze.tickerdata_to_dataframe() method """ analyze = Analyze(default_conf) timerange = TimeRange(None, 'line', 0, -100) tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m', timerange=timerange) tickerlist = {'UNITTEST/BTC': tick} data = analyze.tickerdata_to_dataframe(tickerlist) assert len(data['UNITTEST/BTC']) == 99 # partial candle was removed
def test_common_datearray(default_conf, mocker) -> None: """ Test common_datearray() :return: None """ analyze = Analyze(default_conf) tick = load_tickerdata_file(None, 'BTC_UNITEST', 1) tickerlist = {'BTC_UNITEST': tick} dataframes = analyze.tickerdata_to_dataframe(tickerlist) dates = common_datearray(dataframes) assert dates.size == dataframes['BTC_UNITEST']['date'].size assert dates[0] == dataframes['BTC_UNITEST']['date'][0] assert dates[-1] == dataframes['BTC_UNITEST']['date'][-1]
def test_tickerdata_to_dataframe(default_conf, mocker) -> None: """ Test Backtesting.tickerdata_to_dataframe() method """ patch_exchange(mocker) timerange = TimeRange(None, 'line', 0, -100) tick = optimize.load_tickerdata_file(None, 'UNITTEST/BTC', '1m', timerange=timerange) tickerlist = {'UNITTEST/BTC': tick} backtesting = Backtesting(default_conf) data = backtesting.tickerdata_to_dataframe(tickerlist) assert len(data['UNITTEST/BTC']) == 99 # Load Analyze to compare the result between Backtesting function and Analyze are the same analyze = Analyze(default_conf) data2 = analyze.tickerdata_to_dataframe(tickerlist) assert data['UNITTEST/BTC'].equals(data2['UNITTEST/BTC'])
def plot_analyzed_dataframe(args: Namespace) -> None: """ Calls analyze() and plots the returned dataframe :return: None """ global _CONF # Load the configuration _CONF.update(setup_configuration(args)) # Set the pair to audit pair = args.pair if pair is None: logger.critical('Parameter --pair mandatory;. E.g --pair ETH/BTC') exit() if '/' not in pair: logger.critical('--pair format must be XXX/YYY') exit() # Set timerange to use timerange = Arguments.parse_timerange(args.timerange) # Load the strategy try: analyze = Analyze(_CONF) exchange = Exchange(_CONF) except AttributeError: logger.critical( 'Impossible to load the strategy. Please check the file "user_data/strategies/%s.py"', args.strategy) exit() # Set the ticker to use tick_interval = analyze.get_ticker_interval() # Load pair tickers tickers = {} if args.live: logger.info('Downloading pair.') tickers[pair] = exchange.get_ticker_history(pair, tick_interval) else: tickers = optimize.load_data(datadir=_CONF.get("datadir"), pairs=[pair], ticker_interval=tick_interval, refresh_pairs=_CONF.get( 'refresh_pairs', False), timerange=timerange) # No ticker found, or impossible to download if tickers == {}: exit() # Get trades already made from the DB trades: List[Trade] = [] if args.db_url: persistence.init(_CONF) trades = Trade.query.filter(Trade.pair.is_(pair)).all() dataframes = analyze.tickerdata_to_dataframe(tickers) dataframe = dataframes[pair] dataframe = analyze.populate_buy_trend(dataframe) dataframe = analyze.populate_sell_trend(dataframe) if len(dataframe.index) > 750: logger.warning('Ticker contained more than 750 candles, clipping.') fig = generate_graph(pair=pair, trades=trades, data=dataframe.tail(750), args=args) plot(fig, filename=os.path.join('user_data', 'freqtrade-plot.html'))
def plot_profit(args: Namespace) -> None: """ Plots the total profit for all pairs. Note, the profit calculation isn't realistic. But should be somewhat proportional, and therefor useful in helping out to find a good algorithm. """ # We need to use the same pairs, same tick_interval # and same timeperiod as used in backtesting # to match the tickerdata against the profits-results timerange = Arguments.parse_timerange(args.timerange) config = Configuration(args).get_config() # Init strategy try: analyze = Analyze({'strategy': config.get('strategy')}) except AttributeError: logger.critical( 'Impossible to load the strategy. Please check the file "user_data/strategies/%s.py"', config.get('strategy')) exit(1) # Load the profits results try: filename = args.exportfilename with open(filename) as file: data = json.load(file) except FileNotFoundError: logger.critical( 'File "backtest-result.json" not found. This script require backtesting ' 'results to run.\nPlease run a backtesting with the parameter --export.' ) exit(1) # Take pairs from the cli otherwise switch to the pair in the config file if args.pair: filter_pairs = args.pair filter_pairs = filter_pairs.split(',') else: filter_pairs = config['exchange']['pair_whitelist'] tick_interval = analyze.strategy.ticker_interval pairs = config['exchange']['pair_whitelist'] if filter_pairs: pairs = list(set(pairs) & set(filter_pairs)) logger.info('Filter, keep pairs %s' % pairs) tickers = optimize.load_data(datadir=config.get('datadir'), pairs=pairs, ticker_interval=tick_interval, refresh_pairs=False, timerange=timerange) dataframes = analyze.tickerdata_to_dataframe(tickers) # NOTE: the dataframes are of unequal length, # 'dates' is an merged date array of them all. dates = misc.common_datearray(dataframes) min_date = int(min(dates).timestamp()) max_date = int(max(dates).timestamp()) num_iterations = define_index(min_date, max_date, tick_interval) + 1 # Make an average close price of all the pairs that was involved. # this could be useful to gauge the overall market trend # We are essentially saying: # array <- sum dataframes[*]['close'] / num_items dataframes # FIX: there should be some onliner numpy/panda for this avgclose = np.zeros(num_iterations) num = 0 for pair, pair_data in dataframes.items(): close = pair_data['close'] maxprice = max(close) # Normalize price to [0,1] logger.info('Pair %s has length %s' % (pair, len(close))) for x in range(0, len(close)): avgclose[x] += close[x] / maxprice # avgclose += close num += 1 avgclose /= num # make an profits-growth array pg = make_profit_array(data, num_iterations, min_date, tick_interval, filter_pairs) # # Plot the pairs average close prices, and total profit growth # avgclose = go.Scattergl( x=dates, y=avgclose, name='Avg close price', ) profit = go.Scattergl( x=dates, y=pg, name='Profit', ) fig = tools.make_subplots(rows=3, cols=1, shared_xaxes=True, row_width=[1, 1, 1]) fig.append_trace(avgclose, 1, 1) fig.append_trace(profit, 2, 1) for pair in pairs: pg = make_profit_array(data, num_iterations, min_date, tick_interval, pair) pair_profit = go.Scattergl( x=dates, y=pg, name=pair, ) fig.append_trace(pair_profit, 3, 1) plot(fig, filename=os.path.join('user_data', 'freqtrade-profit-plot.html'))
def plot_analyzed_dataframe(args: Namespace) -> None: """ Calls analyze() and plots the returned dataframe :return: None """ pair = args.pair.replace('-', '_') timerange = Arguments.parse_timerange(args.timerange) # Init strategy try: analyze = Analyze({'strategy': args.strategy}) except AttributeError: logger.critical( 'Impossible to load the strategy. Please check the file "user_data/strategies/%s.py"', args.strategy) exit() tick_interval = analyze.strategy.ticker_interval tickers = {} if args.live: logger.info('Downloading pair.') # Init Bittrex to use public API exchange._API = exchange.Bittrex({'key': '', 'secret': ''}) tickers[pair] = exchange.get_ticker_history(pair, tick_interval) else: tickers = optimize.load_data(datadir=args.datadir, pairs=[pair], ticker_interval=tick_interval, refresh_pairs=False, timerange=timerange) dataframes = analyze.tickerdata_to_dataframe(tickers) dataframe = dataframes[pair] dataframe = analyze.populate_buy_trend(dataframe) dataframe = analyze.populate_sell_trend(dataframe) if len(dataframe.index) > 750: logger.warning('Ticker contained more than 750 candles, clipping.') data = dataframe.tail(750) candles = go.Candlestick(x=data.date, open=data.open, high=data.high, low=data.low, close=data.close, name='Price') df_buy = data[data['buy'] == 1] buys = go.Scattergl(x=df_buy.date, y=df_buy.close, mode='markers', name='buy', marker=dict( symbol='triangle-up-dot', size=9, line=dict(width=1), color='green', )) df_sell = data[data['sell'] == 1] sells = go.Scattergl(x=df_sell.date, y=df_sell.close, mode='markers', name='sell', marker=dict( symbol='triangle-down-dot', size=9, line=dict(width=1), color='red', )) bb_lower = go.Scatter( x=data.date, y=data.bb_lowerband, name='BB lower', line={'color': "transparent"}, ) bb_upper = go.Scatter( x=data.date, y=data.bb_upperband, name='BB upper', fill="tonexty", fillcolor="rgba(0,176,246,0.2)", line={'color': "transparent"}, ) macd = go.Scattergl(x=data['date'], y=data['macd'], name='MACD') macdsignal = go.Scattergl(x=data['date'], y=data['macdsignal'], name='MACD signal') volume = go.Bar(x=data['date'], y=data['volume'], name='Volume') fig = tools.make_subplots( rows=3, cols=1, shared_xaxes=True, row_width=[1, 1, 4], vertical_spacing=0.0001, ) fig.append_trace(candles, 1, 1) fig.append_trace(bb_lower, 1, 1) fig.append_trace(bb_upper, 1, 1) fig.append_trace(buys, 1, 1) fig.append_trace(sells, 1, 1) fig.append_trace(volume, 2, 1) fig.append_trace(macd, 3, 1) fig.append_trace(macdsignal, 3, 1) fig['layout'].update(title=args.pair) fig['layout']['yaxis1'].update(title='Price') fig['layout']['yaxis2'].update(title='Volume') fig['layout']['yaxis3'].update(title='MACD') plot(fig, filename='freqtrade-plot.html')