示例#1
0
    def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, DataFrame],
                              timerange: TimeRange):
        self.progress.init_step(BacktestState.ANALYZE, 0)

        logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
        backtest_start_time = datetime.now(timezone.utc)
        self._set_strategy(strat)

        strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()

        # Use max_open_trades in backtesting, except --disable-max-market-positions is set
        if self.config.get('use_max_market_positions', True):
            # Must come from strategy config, as the strategy may modify this setting.
            max_open_trades = self.strategy.config['max_open_trades']
        else:
            logger.info(
                'Ignoring max_open_trades (--disable-max-market-positions was used) ...')
            max_open_trades = 0

        # need to reprocess data every time to populate signals
        preprocessed = self.strategy.advise_all_indicators(data)

        # Trim startup period from analyzed dataframe
        preprocessed_tmp = trim_dataframes(preprocessed, timerange, self.required_startup)

        if not preprocessed_tmp:
            raise OperationalException(
                "No data left after adjusting for startup candles.")

        # Use preprocessed_tmp for date generation (the trimmed dataframe).
        # Backtesting will re-trim the dataframes after buy/sell signal generation.
        min_date, max_date = history.get_timerange(preprocessed_tmp)
        logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
                    f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
                    f'({(max_date - min_date).days} days).')
        # Execute backtest and store results
        results = self.backtest(
            processed=preprocessed,
            start_date=min_date,
            end_date=max_date,
            max_open_trades=max_open_trades,
            position_stacking=self.config.get('position_stacking', False),
            enable_protections=self.config.get('enable_protections', False),
        )
        backtest_end_time = datetime.now(timezone.utc)
        results.update({
            'run_id': self.run_ids.get(strat.get_strategy_name(), ''),
            'backtest_start_time': int(backtest_start_time.timestamp()),
            'backtest_end_time': int(backtest_end_time.timestamp()),
        })
        self.all_results[self.strategy.get_strategy_name()] = results

        return min_date, max_date
示例#2
0
    def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, Any],
                              timerange: TimeRange):
        logger.info("Running backtesting for Strategy %s",
                    strat.get_strategy_name())
        backtest_start_time = datetime.now(timezone.utc)
        self._set_strategy(strat)

        strategy_safe_wrapper(self.strategy.bot_loop_start,
                              supress_error=True)()

        # Use max_open_trades in backtesting, except --disable-max-market-positions is set
        if self.config.get('use_max_market_positions', True):
            # Must come from strategy config, as the strategy may modify this setting.
            max_open_trades = self.strategy.config['max_open_trades']
        else:
            logger.info(
                'Ignoring max_open_trades (--disable-max-market-positions was used) ...'
            )
            max_open_trades = 0

        # need to reprocess data every time to populate signals
        preprocessed = self.strategy.ohlcvdata_to_dataframe(data)

        # Trim startup period from analyzed dataframe
        for pair, df in preprocessed.items():
            preprocessed[pair] = trim_dataframe(
                df, timerange, startup_candles=self.required_startup)
        min_date, max_date = history.get_timerange(preprocessed)

        logger.info(
            f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'({(max_date - min_date).days} days)..')
        # Execute backtest and store results
        results = self.backtest(
            processed=preprocessed,
            start_date=min_date.datetime,
            end_date=max_date.datetime,
            max_open_trades=max_open_trades,
            position_stacking=self.config.get('position_stacking', False),
            enable_protections=self.config.get('enable_protections', False),
        )
        backtest_end_time = datetime.now(timezone.utc)
        self.all_results[self.strategy.get_strategy_name()] = {
            'results':
            results,
            'config':
            self.strategy.config,
            'locks':
            PairLocks.get_all_locks(),
            'final_balance':
            self.wallets.get_total(self.strategy.config['stake_currency']),
            'backtest_start_time':
            int(backtest_start_time.timestamp()),
            'backtest_end_time':
            int(backtest_end_time.timestamp()),
        }
        return min_date, max_date
示例#3
0
    def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, Any], timerange: TimeRange):
        logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
        backtest_start_time = datetime.now(timezone.utc)
        self._set_strategy(strat)

        strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()

        # Use max_open_trades in backtesting, except --disable-max-market-positions is set
        if self.config.get('use_max_market_positions', True):
            # Must come from strategy config, as the strategy may modify this setting.
            max_open_trades = self.strategy.config['max_open_trades']
        else:
            logger.info(
                'Ignoring max_open_trades (--disable-max-market-positions was used) ...')
            max_open_trades = 0

        # need to reprocess data every time to populate signals
        preprocessed = self.strategy.ohlcvdata_to_dataframe(data)

        # Trim startup period from analyzed dataframe
        for pair in list(preprocessed):
            df = preprocessed[pair]
            df = trim_dataframe(df, timerange, startup_candles=self.required_startup)
            if len(df) > 0:
                preprocessed[pair] = df
            else:
                logger.warning(f'{pair} has no data left after adjusting for startup candles, '
                               f'skipping.')
                del preprocessed[pair]

        if not preprocessed:
            raise OperationalException(
                "No data left after adjusting for startup candles.")

        min_date, max_date = history.get_timerange(preprocessed)
        logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
                    f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
                    f'({(max_date - min_date).days} days).')
        # Execute backtest and store results
        results = self.backtest(
            processed=preprocessed,
            start_date=min_date,
            end_date=max_date,
            max_open_trades=max_open_trades,
            position_stacking=self.config.get('position_stacking', False),
            enable_protections=self.config.get('enable_protections', False),
        )
        backtest_end_time = datetime.now(timezone.utc)
        results.update({
            'backtest_start_time': int(backtest_start_time.timestamp()),
            'backtest_end_time': int(backtest_end_time.timestamp()),
        })
        self.all_results[self.strategy.get_strategy_name()] = results

        return min_date, max_date