示例#1
0
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
        dataframe["rsi"] = ta.RSI(dataframe)

        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=1)
        dataframe["bb1_lowerband"] = bollinger["lower"]
        dataframe["bb1_middleband"] = bollinger["mid"]
        dataframe["bb1_upperband"] = bollinger["upper"]

        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe["bb2_lowerband"] = bollinger["lower"]
        dataframe["bb2_middleband"] = bollinger["mid"]
        dataframe["bb2_upperband"] = bollinger["upper"]

        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=3)
        dataframe["bb3_lowerband"] = bollinger["lower"]
        dataframe["bb3_middleband"] = bollinger["mid"]
        dataframe["bb3_upperband"] = bollinger["upper"]

        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=4)
        dataframe["bb4_lowerband"] = bollinger["lower"]
        dataframe["bb4_middleband"] = bollinger["mid"]
        dataframe["bb4_upperband"] = bollinger["upper"]

        return dataframe
示例#2
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        # Bollinger bands
        bollinger1 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                             window=20,
                                             stds=1)
        dataframe['bb1_lowerband'] = bollinger1['lower']
        dataframe['bb1_middleband'] = bollinger1['mid']
        dataframe['bb1_upperband'] = bollinger1['upper']
        bollinger2 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                             window=20,
                                             stds=2)
        dataframe['bb2_lowerband'] = bollinger2['lower']
        dataframe['bb2_middleband'] = bollinger2['mid']
        dataframe['bb2_upperband'] = bollinger2['upper']
        bollinger3 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                             window=20,
                                             stds=3)
        dataframe['bb3_lowerband'] = bollinger3['lower']
        dataframe['bb3_middleband'] = bollinger3['mid']
        dataframe['bb3_upperband'] = bollinger3['upper']
        bollinger4 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                             window=20,
                                             stds=4)
        dataframe['bb4_lowerband'] = bollinger4['lower']
        dataframe['bb4_middleband'] = bollinger4['mid']
        dataframe['bb4_upperband'] = bollinger4['upper']

        return dataframe
示例#3
0
文件: BBRSI.py 项目: enryIT/freqtrade
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
        dataframe['rsi-buy'] = ta.RSI(dataframe)
        dataframe['rsi-sell'] = ta.RSI(dataframe)

        # Bollinger bands
        bollinger_1sd = qtpylib.bollinger_bands(
            qtpylib.typical_price(dataframe), window=20, stds=1)
        dataframe['bb_lowerband_1sd'] = bollinger_1sd['lower']
        dataframe['bb_middleband_1sd'] = bollinger_1sd['mid']
        dataframe['bb_upperband_1sd'] = bollinger_1sd['upper']

        bollinger_2sd = qtpylib.bollinger_bands(
            qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband_2sd'] = bollinger_2sd['lower']
        dataframe['bb_middleband_2sd'] = bollinger_2sd['mid']
        dataframe['bb_upperband_2sd'] = bollinger_2sd['upper']

        bollinger_3sd = qtpylib.bollinger_bands(
            qtpylib.typical_price(dataframe), window=20, stds=3)
        dataframe['bb_lowerband_3sd'] = bollinger_3sd['lower']
        dataframe['bb_middleband_3sd'] = bollinger_3sd['mid']
        dataframe['bb_upperband_3sd'] = bollinger_3sd['upper']

        bollinger_4sd = qtpylib.bollinger_bands(
            qtpylib.typical_price(dataframe), window=20, stds=4)
        dataframe['bb_lowerband_4sd'] = bollinger_4sd['lower']
        dataframe['bb_middleband_4sd'] = bollinger_4sd['mid']
        dataframe['bb_upperband_4sd'] = bollinger_4sd['upper']

        return dataframe
示例#4
0
 def populate_indicators(self, dataframe: DataFrame,
                         metadata: dict) -> DataFrame:
     """
     Adds several different TA indicators to the given DataFrame
     Performance Note: For the best performance be frugal on the number of indicators
     you are using. Let uncomment only the indicator you are using in your strategies
     or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
     :param dataframe: Dataframe with data from the exchange
     :param metadata: Additional information, like the currently traded pair
     :return: a Dataframe with all mandatory indicators for the strategies
     """
     # Momentum Indicators
     # ------------------------------------
     # RSI
     dataframe['rsi'] = ta.RSI(dataframe)
     dataframe['sell-rsi'] = ta.RSI(dataframe)
     # Bollinger Bands 1 STD
     bollinger1 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                          window=20,
                                          stds=1)
     dataframe['bb_lowerband1'] = bollinger1['lower']
     dataframe['bb_middleband1'] = bollinger1['mid']
     dataframe['bb_upperband1'] = bollinger1['upper']
     # Bollinger Bands 4 STD
     bollinger4 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                          window=20,
                                          stds=4)
     dataframe['bb_lowerband4'] = bollinger4['lower']
     dataframe['bb_middleband4'] = bollinger4['mid']
     dataframe['bb_upperband4'] = bollinger4['upper']
     return dataframe
示例#5
0
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:

        dataframe['rsi'] = ta.RSI(dataframe)
        dataframe['sell-rsi'] = ta.RSI(dataframe)

        # Bollinger bands
        bollinger1 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=1)
        dataframe['bb_lowerband1'] = bollinger1['lower']
        dataframe['bb_middleband1'] = bollinger1['mid']
        dataframe['bb_upperband1'] = bollinger1['upper']

        bollinger2 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband2'] = bollinger2['lower']
        dataframe['bb_middleband2'] = bollinger2['mid']
        dataframe['bb_upperband2'] = bollinger2['upper']

        bollinger3 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=3)
        dataframe['bb_lowerband3'] = bollinger3['lower']
        dataframe['bb_middleband3'] = bollinger3['mid']
        dataframe['bb_upperband3'] = bollinger3['upper']

        bollinger4 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=4)
        dataframe['bb_lowerband4'] = bollinger4['lower']
        dataframe['bb_middleband4'] = bollinger4['mid']
        dataframe['bb_upperband4'] = bollinger4['upper']

        return dataframe
示例#6
0
    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Bollinger bands
        bollinger_1sd = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=1)
        dataframe['bb_upperband_1sd'] = bollinger_1sd['upper']
        dataframe['bb_lowerband_1sd'] = bollinger_1sd['lower']

        bollinger_4sd = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=4)
        dataframe['bb_lowerband_4sd'] = bollinger_4sd['lower']

        return dataframe
示例#7
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        # Set Up Bollinger Bands
        mid, lower = bollinger_bands(dataframe['close'],
                                     window_size=40,
                                     num_of_std=2)
        dataframe['lower'] = lower
        dataframe['bbdelta'] = (mid - dataframe['lower']).abs()
        dataframe['closedelta'] = (dataframe['close'] -
                                   dataframe['close'].shift()).abs()
        dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']

        dataframe['ema_slow'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['volume_mean_slow'] = dataframe['volume'].rolling(
            window=30).mean()
        dataframe['rocr'] = ta.ROCR(dataframe, timeperiod=28)

        inf_tf = '1h'

        informative = self.dp.get_pair_dataframe(pair=metadata['pair'],
                                                 timeframe=inf_tf)
        informative['rocr'] = ta.ROCR(informative, timeperiod=168)
        dataframe = merge_informative_pair(dataframe,
                                           informative,
                                           self.timeframe,
                                           inf_tf,
                                           ffill=True)

        return dataframe
    def normal_tf_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
         # strategy BinHV45
        bb_40 = qtpylib.bollinger_bands(dataframe['close'], window=40, stds=2)
        dataframe['lower'] = bb_40['lower']
        dataframe['mid'] = bb_40['mid']
        dataframe['bbdelta'] = (bb_40['mid'] - dataframe['lower']).abs()
        dataframe['closedelta'] = (dataframe['close'] - dataframe['close'].shift()).abs()
        dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()

        # strategy ClucMay72018
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['ema_slow'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['volume_mean_slow'] = dataframe['volume'].rolling(window=30).mean()

        # EMA
        dataframe['ema_50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema_200'] = ta.EMA(dataframe, timeperiod=200)

        # SMA
        dataframe['sma_5'] = ta.EMA(dataframe, timeperiod=5)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        return dataframe
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Add several indicators needed for buy and sell strategies defined below.
        """
        # ADX
        dataframe['adx'] = ta.ADX(dataframe)
        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)
        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)
        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        # Minus-DI
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)
        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        # SAR
        dataframe['sar'] = ta.SAR(dataframe)

        return dataframe
    def do_populate_indicators(self, dataframe: DataFrame,
                               metadata: dict) -> DataFrame:
        """
        Adds multiple TA indicators to MoniGoMani's DataFrame per pair.
        Should be called with 'informative_pair' (1h candles) during backtesting/hyperopting with TimeFrame-Zoom!

        Performance Note: For the best performance be frugal on the number of indicators you are using.
        Only add in indicators that you are using in your weighted signal configuration for MoniGoMani,
        otherwise you will waste your memory and CPU usage.

        :param dataframe: (DataFrame) DataFrame with data from the exchange
        :param metadata: (dict) Additional information, like the currently traded pair
        :return DataFrame: DataFrame for MoniGoMani with all mandatory indicator data populated
        """

        # Momentum Indicators (timeperiod is expressed in candles)
        # -------------------

        # Parabolic SAR
        dataframe['sar'] = ta.SAR(dataframe)

        # Stochastic Slow
        stoch = ta.STOCH(dataframe)
        dataframe['slowk'] = stoch['slowk']

        # MACD - Moving Average Convergence Divergence
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd[
            'macd']  # MACD - Blue TradingView Line (Bullish if on top)
        dataframe['macdsignal'] = macd[
            'macdsignal']  # Signal - Orange TradingView Line (Bearish if on top)

        # MFI - Money Flow Index (Under bought / Over sold & Over bought / Under sold / volume Indicator)
        dataframe['mfi'] = ta.MFI(dataframe)

        # Overlap Studies
        # ---------------

        # Bollinger Bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_middleband'] = bollinger['mid']

        # SMA's & EMA's are trend following tools (Should not be used when line goes sideways)
        # SMA - Simple Moving Average (Moves slower compared to EMA, price trend over X periods)
        dataframe['sma9'] = ta.SMA(dataframe, timeperiod=9)
        dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
        dataframe['sma200'] = ta.SMA(dataframe, timeperiod=200)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Volume Indicators
        # -----------------

        # Rolling VWAP - Volume Weighted Average Price
        dataframe['rolling_vwap'] = qtpylib.rolling_vwap(dataframe)

        return dataframe
    def normal_tf_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:

        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        dataframe['volume_mean_slow'] = dataframe['volume'].rolling(window=48).mean()

        # EMA
        dataframe['ema_200'] = ta.EMA(dataframe, timeperiod=200)

        dataframe['ema_26'] = ta.EMA(dataframe, timeperiod=26)
        dataframe['ema_12'] = ta.EMA(dataframe, timeperiod=12)

        # MACD 
        dataframe['macd'], dataframe['signal'], dataframe['hist'] = ta.MACD(dataframe['close'], fastperiod=12, slowperiod=26, signalperiod=9)

        # SMA
        dataframe['sma_5'] = ta.EMA(dataframe, timeperiod=5)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        # ------ ATR stuff
        dataframe['atr'] = ta.ATR(dataframe, timeperiod=14)

        # Calculate all ma_sell values
        for val in self.base_nb_candles_sell.range:
            dataframe[f'ma_sell_{val}'] = ta.EMA(dataframe, timeperiod=val)

        return dataframe
示例#12
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        """
        dataframe['gap'] = dataframe['close'].shift(1) - (
            (dataframe['high'].shift(1) - dataframe['low'].shift(1)) * 0.1)
        dataframe['adx'] = ta.ADX(dataframe)
        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)
        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)
        # Stochastic Fast
        stoch_fast = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch_fast['slowd']
        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        return dataframe
示例#13
0
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        ##################################################################################
        # buy and sell indicators

        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # dataframe['cci'] = ta.CCI(dataframe)
        # dataframe['mfi'] = ta.MFI(dataframe)
        # dataframe['rsi'] = ta.RSI(dataframe, timeperiod=7)

        # dataframe['canbuy'] = np.NaN
        # dataframe['canbuy2'] = np.NaN
        # dataframe.loc[dataframe.close.rolling(49).min() <= 1.1 * dataframe.close, 'canbuy'] == 1
        # dataframe.loc[dataframe.close.rolling(600).max() < 1.2 * dataframe.close, 'canbuy'] = 1
        # dataframe.loc[dataframe.close.rolling(600).max() * 0.8 >  dataframe.close, 'canbuy2'] = 1
        ##################################################################################
        # required for graphing
        bollinger = qtpylib.bollinger_bands(dataframe['close'],
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['bb_middleband'] = bollinger['mid']

        return dataframe
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        """

        # Stoch
        stoch = ta.STOCH(dataframe)
        dataframe['slowk'] = stoch['slowk']

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) -
                                   1) / (numpy.exp(2 * rsi) + 1)

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']

        # SAR Parabol
        dataframe['sar'] = ta.SAR(dataframe)

        # Hammer: values [0, 100]
        dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)

        return dataframe
    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        :param dataframe: Dataframe with data from the exchange
        :param metadata: Additional information, like the currently traded pair
        :return: a Dataframe with all mandatory indicators for the strategies
        """

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        for std in range(1, 5):
            # Bollinger bands
            bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=std)
            dataframe[f'bb_lowerband{std}'] = bollinger['lower']
            dataframe[f'bb_middleband{std}'] = bollinger['mid']
            dataframe[f'bb_upperband{std}'] = bollinger['upper']

        # TEMA - Triple Exponential Moving Average
        dataframe[f'tema'] = ta.TEMA(dataframe, timeperiod=9)

        """
        # first check if dataprovider is available
        if self.dp:
            if self.dp.runmode in ('live', 'dry_run'):
                ob = self.dp.orderbook(metadata['pair'], 1)
                dataframe['best_bid'] = ob['bids'][0][0]
                dataframe['best_ask'] = ob['asks'][0][0]
        """

        return dataframe
示例#16
0
    def normal_tf_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:

        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        dataframe['volume_mean_slow'] = dataframe['volume'].rolling(window=48).mean()

        # EMA
        dataframe['ema_200'] = ta.EMA(dataframe, timeperiod=200)

        dataframe['ema_26'] = ta.EMA(dataframe, timeperiod=26)
        dataframe['ema_12'] = ta.EMA(dataframe, timeperiod=12)

        # MACD 
        dataframe['macd'], dataframe['signal'], dataframe['hist'] = ta.MACD(dataframe['close'], fastperiod=12, slowperiod=26, signalperiod=9)

        # SMA
        dataframe['sma_5'] = ta.EMA(dataframe, timeperiod=5)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        return dataframe
示例#17
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        # Set Up Bollinger Bands
        upper_bb1, mid_bb1, lower_bb1 = ta.BBANDS(dataframe['close'],
                                                  timeperiod=40)
        upper_bb2, mid_bb2, lower_bb2 = ta.BBANDS(
            qtpylib.typical_price(dataframe), timeperiod=20)

        # only putting some bands into dataframe as the others are not used elsewhere in the strategy
        dataframe['lower-bb1'] = lower_bb1
        dataframe['lower-bb2'] = lower_bb2
        dataframe['mid-bb2'] = mid_bb2

        dataframe['bb1-delta'] = (mid_bb1 - dataframe['lower-bb1']).abs()
        dataframe['closedelta'] = (dataframe['close'] -
                                   dataframe['close'].shift()).abs()
        dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()

        dataframe['ema_slow'] = ta.EMA(dataframe['close'], timeperiod=48)
        dataframe['volume_mean_slow'] = dataframe['volume'].rolling(
            window=24).mean()

        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        # # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher-rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
        dataframe['adx'] = ta.ADX(dataframe)

        return dataframe
示例#18
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        :param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
        :param metadata: Additional information, like the currently traded pair
        :return: a Dataframe with all mandatory indicators for the strategies
        """

        length = 70

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=length,
                                            stds=2)
        dataframe['lower'] = bollinger['lower']
        dataframe['middle'] = bollinger['mid']
        dataframe['upper'] = bollinger['upper']

        # EMA
        dataframe['ema'] = ta.EMA(dataframe, timeperiod=length)

        return dataframe
示例#19
0
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        """ Adds several different TA indicators to the given DataFrame
        """

        dataframe['ema_{}'.format(self.EMA_SHORT_TERM)] = ta.EMA(
            dataframe, timeperiod=self.EMA_SHORT_TERM
        )
        dataframe['ema_{}'.format(self.EMA_MEDIUM_TERM)] = ta.EMA(
            dataframe, timeperiod=self.EMA_MEDIUM_TERM
        )
        dataframe['ema_{}'.format(self.EMA_LONG_TERM)] = ta.EMA(
            dataframe, timeperiod=self.EMA_LONG_TERM
        )

        bollinger = qtpylib.bollinger_bands(
            qtpylib.typical_price(dataframe), window=20, stds=2
        )
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        dataframe['min'] = ta.MIN(dataframe, timeperiod=self.EMA_MEDIUM_TERM)
        dataframe['max'] = ta.MAX(dataframe, timeperiod=self.EMA_MEDIUM_TERM)

        return dataframe
示例#20
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Bollinger Bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe["bb_percent"] = (
            (dataframe["close"] - dataframe["bb_lowerband"]) /
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"]))
        dataframe["bb_width"] = (
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) /
            dataframe["bb_middleband"])

        # TEMA
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        return dataframe
示例#21
0
def pivots_points(dataframe: pd.DataFrame,
                  timeperiod=1,
                  levels=4) -> pd.DataFrame:
    """
    Pivots Points
    https://www.tradingview.com/support/solutions/43000521824-pivot-points-standard/
    Formula:
    Pivot = (Previous High + Previous Low + Previous Close)/3
    Resistance #1 = (2 x Pivot) - Previous Low
    Support #1 = (2 x Pivot) - Previous High
    Resistance #2 = (Pivot - Support #1) + Resistance #1
    Support #2 = Pivot - (Resistance #1 - Support #1)
    Resistance #3 = (Pivot - Support #2) + Resistance #2
    Support #3 = Pivot - (Resistance #2 - Support #2)
    ...
    :param dataframe:
    :param timeperiod: Period to compare (in ticker)
    :param levels: Num of support/resistance desired
    :return: dataframe
    """

    data = {}

    low = qtpylib.rolling_mean(series=pd.Series(index=dataframe.index,
                                                data=dataframe["low"]),
                               window=timeperiod)

    high = qtpylib.rolling_mean(series=pd.Series(index=dataframe.index,
                                                 data=dataframe["high"]),
                                window=timeperiod)

    # Pivot
    data["pivot"] = qtpylib.rolling_mean(
        series=qtpylib.typical_price(dataframe), window=timeperiod)

    # Resistance #1
    # data["r1"] = (2 * data["pivot"]) - low ... Standard
    # R1 = PP + 0.382 * (HIGHprev - LOWprev) ... fibonacci
    data["r1"] = data['pivot'] + 0.382 * (high - low)

    data["rS1"] = data['pivot'] + 0.0955 * (high - low)

    # Resistance #2
    # data["s1"] = (2 * data["pivot"]) - high ... Standard
    # S1 = PP - 0.382 * (HIGHprev - LOWprev) ... fibonacci
    data["s1"] = data["pivot"] - 0.382 * (high - low)

    # Calculate Resistances and Supports >1
    for i in range(2, levels + 1):
        prev_support = data["s" + str(i - 1)]
        prev_resistance = data["r" + str(i - 1)]

        # Resitance
        data["r" + str(i)] = (data["pivot"] - prev_support) + prev_resistance

        # Support
        data["s" + str(i)] = data["pivot"] - (prev_resistance - prev_support)

    return pd.DataFrame(index=dataframe.index, data=data)
示例#22
0
def pivots_points(dataframe: pd.DataFrame,
                  timeperiod=30,
                  levels=3) -> pd.DataFrame:
    """
    Pivots Points

    https://www.tradingview.com/support/solutions/43000521824-pivot-points-standard/

    Formula:
    Pivot = (Previous High + Previous Low + Previous Close)/3

    Resistance #1 = (2 x Pivot) - Previous Low
    Support #1 = (2 x Pivot) - Previous High

    Resistance #2 = (Pivot - Support #1) + Resistance #1
    Support #2 = Pivot - (Resistance #1 - Support #1)

    Resistance #3 = (Pivot - Support #2) + Resistance #2
    Support #3 = Pivot - (Resistance #2 - Support #2)
    ...

    :param dataframe:
    :param timeperiod: Period to compare (in ticker)
    :param levels: Num of support/resistance desired
    :return: dataframe
    """

    data = {}

    low = qtpylib.rolling_mean(series=pd.Series(index=dataframe.index,
                                                data=dataframe['low']),
                               window=timeperiod)

    high = qtpylib.rolling_mean(series=pd.Series(index=dataframe.index,
                                                 data=dataframe['high']),
                                window=timeperiod)

    # Pivot
    data['pivot'] = qtpylib.rolling_mean(
        series=qtpylib.typical_price(dataframe), window=timeperiod)

    # Resistance #1
    data['r1'] = (2 * data['pivot']) - low

    # Resistance #2
    data['s1'] = (2 * data['pivot']) - high

    # Calculate Resistances and Supports >1
    for i in range(2, levels + 1):
        prev_support = data['s' + str(i - 1)]
        prev_resistance = data['r' + str(i - 1)]

        # Resitance
        data['r' + str(i)] = (data['pivot'] - prev_support) + prev_resistance

        # Support
        data['s' + str(i)] = data['pivot'] - (prev_resistance - prev_support)

    return pd.DataFrame(index=dataframe.index, data=data)
示例#23
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        # Set Up Bollinger Bands
        upper_bb1, mid_bb1, lower_bb1 = ta.BBANDS(dataframe['close'],
                                                  timeperiod=36)
        upper_bb2, mid_bb2, lower_bb2 = ta.BBANDS(
            qtpylib.typical_price(dataframe), timeperiod=12)

        # Only putting some bands into dataframe as the others are not used elsewhere in the strategy
        dataframe['lower-bb1'] = lower_bb1
        dataframe['lower-bb2'] = lower_bb2
        dataframe['mid-bb2'] = mid_bb2

        dataframe['bb1-delta'] = (mid_bb1 - dataframe['lower-bb1']).abs()
        dataframe['closedelta'] = (dataframe['close'] -
                                   dataframe['close'].shift()).abs()
        dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()

        # Additional indicators
        dataframe['ema_fast'] = ta.EMA(dataframe['close'], timeperiod=6)
        dataframe['ema_slow'] = ta.EMA(dataframe['close'], timeperiod=48)
        dataframe['volume_mean_slow'] = dataframe['volume'].rolling(
            window=24).mean()

        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher-rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        # Informative Pair Indicators
        coin, stake = metadata['pair'].split('/')
        fiat = self.fiat
        stake_fiat = f"{stake}/{self.fiat}"
        coin_fiat = f"{coin}/{self.fiat}"

        coin_fiat_inf = self.dp.get_pair_dataframe(pair=f"{coin}/{fiat}",
                                                   timeframe=self.timeframe)
        dataframe['coin-fiat-adx'] = ta.ADX(coin_fiat_inf, timeperiod=21)
        coin_aroon = ta.AROON(coin_fiat_inf, timeperiod=25)
        dataframe['coin-fiat-aroon-down'] = coin_aroon['aroondown']
        dataframe['coin-fiat-aroon-up'] = coin_aroon['aroonup']

        stake_fiat_inf = self.dp.get_pair_dataframe(pair=f"{stake}/{fiat}",
                                                    timeframe=self.timeframe)
        dataframe['stake-fiat-adx'] = ta.ADX(stake_fiat_inf, timeperiod=21)
        stake_aroon = ta.AROON(stake_fiat_inf, timeperiod=25)
        dataframe['stake-fiat-aroon-down'] = stake_aroon['aroondown']
        dataframe['stake-fiat-aroon-up'] = stake_aroon['aroonup']

        # These indicators are used to persist a buy signal in live trading only
        # They dramatically slow backtesting down
        if self.config['runmode'].value in ('live', 'dry_run'):
            dataframe['sar'] = ta.SAR(dataframe)

        return dataframe
示例#24
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
        dataframe['rsi_84'] = ta.RSI(dataframe, timeperiod=84)
        dataframe['rsi_112'] = ta.RSI(dataframe, timeperiod=112)

        # Bollinger bands
        bollinger1 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                             window=17,
                                             stds=1)
        dataframe['bb_lowerband'] = bollinger1['lower']
        dataframe['bb_middleband'] = bollinger1['mid']
        dataframe['bb_upperband'] = bollinger1['upper']

        # Close delta
        dataframe['closedelta'] = (dataframe['close'] -
                                   dataframe['close'].shift()).abs()

        # Dip Protection
        dataframe['tpct_change_0'] = top_percent_change(dataframe, 0)
        dataframe['tpct_change_1'] = top_percent_change(dataframe, 1)
        dataframe['tpct_change_2'] = top_percent_change(dataframe, 2)
        dataframe['tpct_change_4'] = top_percent_change(dataframe, 4)
        dataframe['tpct_change_5'] = top_percent_change(dataframe, 5)
        dataframe['tpct_change_9'] = top_percent_change(dataframe, 9)

        # SMA
        dataframe['sma_50'] = ta.SMA(dataframe['close'], timeperiod=50)
        dataframe['sma_200'] = ta.SMA(dataframe['close'], timeperiod=200)

        # CTI
        dataframe['cti'] = pta.cti(dataframe["close"], length=20)

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # %R
        dataframe['r_14'] = williams_r(dataframe, period=14)
        dataframe['r_96'] = williams_r(dataframe, period=96)

        # MAMA / FAMA
        dataframe['hl2'] = (dataframe['high'] + dataframe['low']) / 2
        dataframe['mama'], dataframe['fama'] = ta.MAMA(dataframe['hl2'], 0.5,
                                                       0.05)
        dataframe['mama_diff'] = ((dataframe['mama'] - dataframe['fama']) /
                                  dataframe['hl2'])

        # CRSI (3, 2, 100)
        crsi_closechange = dataframe['close'] / dataframe['close'].shift(1)
        crsi_updown = np.where(crsi_closechange.gt(1), 1.0,
                               np.where(crsi_closechange.lt(1), -1.0, 0.0))
        dataframe['crsi'] = (ta.RSI(dataframe['close'], timeperiod=3) + ta.RSI(
            crsi_updown, timeperiod=2) + ta.ROC(dataframe['close'], 100)) / 3

        return dataframe
示例#25
0
 def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
 
     # Bollinger bands
     bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
     dataframe['bb_lowerband'] = bollinger['lower']
     dataframe['bb_middleband'] = bollinger['mid']
     dataframe['bb_upperband'] = bollinger['upper']
    
     dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
     return dataframe
示例#26
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        # Adding EMA's into the dataframe
        dataframe["s1_ema_xs"] = ta.EMA(dataframe, timeperiod=self.s1_ema_xs)
        dataframe["s1_ema_sm"] = ta.EMA(dataframe, timeperiod=self.s1_ema_sm)
        dataframe["s1_ema_md"] = ta.EMA(dataframe, timeperiod=self.s1_ema_md)
        dataframe["s1_ema_xl"] = ta.EMA(dataframe, timeperiod=self.s1_ema_xl)
        dataframe["s1_ema_xxl"] = ta.EMA(dataframe, timeperiod=self.s1_ema_xxl)

        s2_ema_value = ta.EMA(dataframe, timeperiod=self.s2_ema_input)
        s2_ema_xxl_value = ta.EMA(dataframe, timeperiod=200)
        dataframe[
            "s2_ema"] = s2_ema_value - s2_ema_value * self.s2_ema_offset_input
        dataframe[
            "s2_ema_xxl_off"] = s2_ema_xxl_value - s2_ema_xxl_value * self.s2_fib_lower_value
        dataframe["s2_ema_xxl"] = ta.EMA(dataframe, timeperiod=200)

        s2_bb_sma_value = ta.SMA(dataframe, timeperiod=self.s2_bb_sma_length)
        s2_bb_std_dev_value = ta.STDDEV(dataframe, self.s2_bb_std_dev_length)
        dataframe["s2_bb_std_dev_value"] = s2_bb_std_dev_value
        dataframe["s2_bb_lower_band"] = s2_bb_sma_value - (
            s2_bb_std_dev_value * self.s2_bb_lower_offset)

        s2_fib_atr_value = ta.ATR(dataframe, timeframe=self.s2_fib_atr_len)
        s2_fib_sma_value = ta.SMA(dataframe, timeperiod=self.s2_fib_sma_len)

        dataframe[
            "s2_fib_lower_band"] = s2_fib_sma_value - s2_fib_atr_value * self.s2_fib_lower_value

        s3_bollinger = qtpylib.bollinger_bands(
            qtpylib.typical_price(dataframe), window=20, stds=3)
        dataframe["s3_bb_lowerband"] = s3_bollinger["lower"]

        dataframe["s3_ema_long"] = ta.EMA(dataframe,
                                          timeperiod=self.s3_ema_long)
        dataframe["s3_ema_short"] = ta.EMA(dataframe,
                                           timeperiod=self.s3_ema_short)
        dataframe["s3_fast_ma"] = ta.EMA(
            dataframe["volume"] * dataframe["close"],
            self.s3_ma_fast) / ta.EMA(dataframe["volume"], self.s3_ma_fast)
        dataframe["s3_slow_ma"] = ta.EMA(
            dataframe["volume"] * dataframe["close"],
            self.s3_ma_slow) / ta.EMA(dataframe["volume"], self.s3_ma_slow)

        # Volume weighted MACD
        dataframe["fastMA"] = ta.EMA(dataframe["volume"] * dataframe["close"],
                                     12) / ta.EMA(dataframe["volume"], 12)
        dataframe["slowMA"] = ta.EMA(dataframe["volume"] * dataframe["close"],
                                     26) / ta.EMA(dataframe["volume"], 26)
        dataframe["vwmacd"] = dataframe["fastMA"] - dataframe["slowMA"]
        dataframe["signal"] = ta.EMA(dataframe["vwmacd"], 9)
        dataframe["hist"] = dataframe["vwmacd"] - dataframe["signal"]

        return dataframe
示例#27
0
文件: strato.py 项目: MorMar7/Strato
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=21,
                                            stds=2.7)
        dataframe['bblow'] = bollinger['lower']

        bollinger3 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                             window=21,
                                             stds=2.1)
        dataframe['bbhi'] = bollinger3['upper']

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # #RSI
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
        # #StochRSI
        period = 14
        smoothD = 3
        SmoothK = 3
        stochrsi = (dataframe['rsi'] - dataframe['rsi'].rolling(period).min()
                    ) / (dataframe['rsi'].rolling(period).max() -
                         dataframe['rsi'].rolling(period).min())
        dataframe['srsi_k'] = stochrsi.rolling(SmoothK).mean() * 100
        dataframe['srsi_d'] = dataframe['srsi_k'].rolling(smoothD).mean()

        # dataframe_5m = resample_to_interval(dataframe, 5)
        # dataframe_5m['rsi']=ta.RSI(dataframe_5m, timeperiod=14)
        # stochrsi_5m = (dataframe_5m['rsi'] - dataframe_5m['rsi'].rolling(period).min()) / (dataframe_5m['rsi'].rolling(period).max() - dataframe_5m['rsi'].rolling(period).min())
        # dataframe_5m['srsik']= stochrsi_5m.rolling(SmoothK).mean() * 100
        # dataframe_5m['srsid'] = dataframe_5m['srsi_k'].rolling(smoothD).mean()
        # dataframe = resampled_merge(dataframe, dataframe_5m, fill_na=True)

        return dataframe
示例#28
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Stochastic Slow
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']

        # Bollinger Bands
        bollinger1 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                             window=20,
                                             stds=1)
        dataframe['bb_lowerband1'] = bollinger1['lower']
        dataframe['bb_middleband1'] = bollinger1['mid']
        dataframe['bb_upperband1'] = bollinger1['upper']

        bollinger2 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                             window=20,
                                             stds=2)
        dataframe['bb_lowerband2'] = bollinger2['lower']
        dataframe['bb_middleband2'] = bollinger2['mid']
        dataframe['bb_upperband2'] = bollinger2['upper']

        bollinger3 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                             window=20,
                                             stds=3)
        dataframe['bb_lowerband3'] = bollinger3['lower']
        dataframe['bb_middleband3'] = bollinger3['mid']
        dataframe['bb_upperband3'] = bollinger3['upper']

        bollinger4 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                             window=20,
                                             stds=4)
        dataframe['bb_lowerband4'] = bollinger4['lower']
        dataframe['bb_middleband4'] = bollinger4['mid']
        dataframe['bb_upperband4'] = bollinger4['upper']

        return dataframe
示例#29
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        :param dataframe: Dataframe with data from the exchange
        :param metadata: Additional information, like the currently traded pair
        :return: a Dataframe with all mandatory indicators for the strategies
        """

        # Momentum Indicator
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # Minus Directional Indicator / Movement
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # Plus Directional Indicator / Movement
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        # EMA - Exponential Moving Average
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)

        return dataframe
示例#30
0
 def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
     """
     Adds several different TA indicators to the given DataFrame
     Performance Note: For the best performance be frugal on the number of indicators
     you are using. Let uncomment only the indicator you are using in your strategies
     or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
     :param dataframe: Dataframe with data from the exchange
     :param metadata: Additional information, like the currently traded pair
     :return: a Dataframe with all mandatory indicators for the strategies
     """
     # Momentum Indicators
     # ------------------------------------
     dataframe['rsi'] = ta.RSI(dataframe)
     # # Stochastic RSI
     stoch_rsi = ta.STOCHRSI(dataframe)
     # dataframe['fastd_rsi'] = stoch_rsi['fastd']
     dataframe['fastk_rsi'] = stoch_rsi['fastk']
     # # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
     # rsi = 0.1 * (dataframe['rsi'] - 50)
     # dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
     # MACD
     macd = ta.MACD(dataframe)
     dataframe['macd'] = macd['macd']
     # dataframe['macdsignal'] = macd['macdsignal']
     # dataframe['macdhist'] = macd['macdhist']
      # Parabolic SAR
     dataframe['sar'] = ta.SAR(dataframe)
     # # ROC
     # dataframe['roc'] = ta.ROC(dataframe)
     # Overlap Studies
     # ------------------------------------
     # Bollinger Bands
     bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
     dataframe['bb_lowerband'] = bollinger['lower']
     dataframe['bb_middleband'] = bollinger['mid']
     dataframe['bb_upperband'] = bollinger['upper']
     # Bollinger Bands - Weighted (EMA based instead of SMA)
     # weighted_bollinger = qtpylib.weighted_bollinger_bands(
     #     qtpylib.typical_price(dataframe), window=20, stds=2
     # )
     # dataframe["wbb_upperband"] = weighted_bollinger["upper"]
     # dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
     # dataframe["wbb_middleband"] = weighted_bollinger["mid"]
     # dataframe["wbb_percent"] = (
     #     (dataframe["close"] - dataframe["wbb_lowerband"]) /
     #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
     # )
     # dataframe["wbb_width"] = (
     #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) / dataframe["wbb_middleband"]
     # )
     return dataframe