class Backtesting:
    """
    Backtesting class, this class contains all the logic to run a backtest

    To run a backtest:
    backtesting = Backtesting(config)
    backtesting.start()
    """
    def __init__(self, config: Dict[str, Any]) -> None:

        LoggingMixin.show_output = False
        self.config = config
        self.results: Dict[str, Any] = {}

        config['dry_run'] = True
        self.run_ids: Dict[str, str] = {}
        self.strategylist: List[IStrategy] = []
        self.all_results: Dict[str, Dict] = {}

        self.exchange = ExchangeResolver.load_exchange(
            self.config['exchange']['name'], self.config)
        self.dataprovider = DataProvider(self.config, self.exchange)

        if self.config.get('strategy_list', None):
            for strat in list(self.config['strategy_list']):
                stratconf = deepcopy(self.config)
                stratconf['strategy'] = strat
                self.strategylist.append(
                    StrategyResolver.load_strategy(stratconf))
                validate_config_consistency(stratconf)

        else:
            # No strategy list specified, only one strategy
            self.strategylist.append(
                StrategyResolver.load_strategy(self.config))
            validate_config_consistency(self.config)

        if "timeframe" not in self.config:
            raise OperationalException(
                "Timeframe (ticker interval) needs to be set in either "
                "configuration or as cli argument `--timeframe 5m`")
        self.timeframe = str(self.config.get('timeframe'))
        self.timeframe_min = timeframe_to_minutes(self.timeframe)
        self.init_backtest_detail()
        self.pairlists = PairListManager(self.exchange, self.config)
        if 'VolumePairList' in self.pairlists.name_list:
            raise OperationalException(
                "VolumePairList not allowed for backtesting. "
                "Please use StaticPairlist instead.")
        if 'PerformanceFilter' in self.pairlists.name_list:
            raise OperationalException(
                "PerformanceFilter not allowed for backtesting.")

        if len(self.strategylist
               ) > 1 and 'PrecisionFilter' in self.pairlists.name_list:
            raise OperationalException(
                "PrecisionFilter not allowed for backtesting multiple strategies."
            )

        self.dataprovider.add_pairlisthandler(self.pairlists)
        self.pairlists.refresh_pairlist()

        if len(self.pairlists.whitelist) == 0:
            raise OperationalException("No pair in whitelist.")

        if config.get('fee', None) is not None:
            self.fee = config['fee']
        else:
            self.fee = self.exchange.get_fee(
                symbol=self.pairlists.whitelist[0])

        self.timerange = TimeRange.parse_timerange(None if self.config.get(
            'timerange') is None else str(self.config.get('timerange')))

        # Get maximum required startup period
        self.required_startup = max(
            [strat.startup_candle_count for strat in self.strategylist])
        # Add maximum startup candle count to configuration for informative pairs support
        self.config['startup_candle_count'] = self.required_startup
        self.exchange.validate_required_startup_candles(
            self.required_startup, self.timeframe)
        self.init_backtest()

    def __del__(self):
        self.cleanup()

    def cleanup(self):
        LoggingMixin.show_output = True
        PairLocks.use_db = True
        Trade.use_db = True

    def init_backtest_detail(self):
        # Load detail timeframe if specified
        self.timeframe_detail = str(self.config.get('timeframe_detail', ''))
        if self.timeframe_detail:
            self.timeframe_detail_min = timeframe_to_minutes(
                self.timeframe_detail)
            if self.timeframe_min <= self.timeframe_detail_min:
                raise OperationalException(
                    "Detail timeframe must be smaller than strategy timeframe."
                )

        else:
            self.timeframe_detail_min = 0
        self.detail_data: Dict[str, DataFrame] = {}

    def init_backtest(self):

        self.prepare_backtest(False)

        self.wallets = Wallets(self.config, self.exchange, log=False)

        self.progress = BTProgress()
        self.abort = False

    def _set_strategy(self, strategy: IStrategy):
        """
        Load strategy into backtesting
        """
        self.strategy: IStrategy = strategy
        strategy.dp = self.dataprovider
        # Attach Wallets to Strategy baseclass
        strategy.wallets = self.wallets
        # Set stoploss_on_exchange to false for backtesting,
        # since a "perfect" stoploss-sell is assumed anyway
        # And the regular "stoploss" function would not apply to that case
        self.strategy.order_types['stoploss_on_exchange'] = False

    def _load_protections(self, strategy: IStrategy):
        if self.config.get('enable_protections', False):
            conf = self.config
            if hasattr(strategy, 'protections'):
                conf = deepcopy(conf)
                conf['protections'] = strategy.protections
            self.protections = ProtectionManager(self.config,
                                                 strategy.protections)

    def load_bt_data(self) -> Tuple[Dict[str, DataFrame], TimeRange]:
        """
        Loads backtest data and returns the data combined with the timerange
        as tuple.
        """
        self.progress.init_step(BacktestState.DATALOAD, 1)

        data = history.load_data(
            datadir=self.config['datadir'],
            pairs=self.pairlists.whitelist,
            timeframe=self.timeframe,
            timerange=self.timerange,
            startup_candles=self.required_startup,
            fail_without_data=True,
            data_format=self.config.get('dataformat_ohlcv', 'json'),
        )

        min_date, max_date = history.get_timerange(data)

        logger.info(
            f'Loading data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'({(max_date - min_date).days} days).')

        # Adjust startts forward if not enough data is available
        self.timerange.adjust_start_if_necessary(
            timeframe_to_seconds(self.timeframe), self.required_startup,
            min_date)

        self.progress.set_new_value(1)
        return data, self.timerange

    def load_bt_data_detail(self) -> None:
        """
        Loads backtest detail data (smaller timeframe) if necessary.
        """
        if self.timeframe_detail:
            self.detail_data = history.load_data(
                datadir=self.config['datadir'],
                pairs=self.pairlists.whitelist,
                timeframe=self.timeframe_detail,
                timerange=self.timerange,
                startup_candles=0,
                fail_without_data=True,
                data_format=self.config.get('dataformat_ohlcv', 'json'),
            )
        else:
            self.detail_data = {}

    def prepare_backtest(self, enable_protections):
        """
        Backtesting setup method - called once for every call to "backtest()".
        """
        PairLocks.use_db = False
        PairLocks.timeframe = self.config['timeframe']
        Trade.use_db = False
        PairLocks.reset_locks()
        Trade.reset_trades()
        self.rejected_trades = 0
        self.dataprovider.clear_cache()
        if enable_protections:
            self._load_protections(self.strategy)

    def check_abort(self):
        """
        Check if abort was requested, raise DependencyException if that's the case
        Only applies to Interactive backtest mode (webserver mode)
        """
        if self.abort:
            self.abort = False
            raise DependencyException("Stop requested")

    def _get_ohlcv_as_lists(
            self, processed: Dict[str, DataFrame]) -> Dict[str, Tuple]:
        """
        Helper function to convert a processed dataframes into lists for performance reasons.

        Used by backtest() - so keep this optimized for performance.

        :param processed: a processed dictionary with format {pair, data}, which gets cleared to
        optimize memory usage!
        """
        # Every change to this headers list must evaluate further usages of the resulting tuple
        # and eventually change the constants for indexes at the top
        headers = [
            'date', 'buy', 'open', 'close', 'sell', 'low', 'high', 'buy_tag',
            'exit_tag'
        ]
        data: Dict = {}
        self.progress.init_step(BacktestState.CONVERT, len(processed))

        # Create dict with data
        for pair in processed.keys():
            pair_data = processed[pair]
            self.check_abort()
            self.progress.increment()
            if not pair_data.empty:
                pair_data.loc[:, 'buy'] = 0  # cleanup if buy_signal is exist
                pair_data.loc[:, 'sell'] = 0  # cleanup if sell_signal is exist
                pair_data.loc[:,
                              'buy_tag'] = None  # cleanup if buy_tag is exist
                pair_data.loc[:,
                              'exit_tag'] = None  # cleanup if exit_tag is exist

            df_analyzed = self.strategy.advise_sell(
                self.strategy.advise_buy(pair_data, {'pair': pair}), {
                    'pair': pair
                }).copy()
            # Trim startup period from analyzed dataframe
            df_analyzed = processed[pair] = pair_data = trim_dataframe(
                df_analyzed,
                self.timerange,
                startup_candles=self.required_startup)
            # To avoid using data from future, we use buy/sell signals shifted
            # from the previous candle
            df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
            df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1)
            df_analyzed.loc[:, 'buy_tag'] = df_analyzed.loc[:,
                                                            'buy_tag'].shift(1)
            df_analyzed.loc[:,
                            'exit_tag'] = df_analyzed.loc[:,
                                                          'exit_tag'].shift(1)

            # Update dataprovider cache
            self.dataprovider._set_cached_df(pair, self.timeframe, df_analyzed)

            df_analyzed = df_analyzed.drop(df_analyzed.head(1).index)

            # Convert from Pandas to list for performance reasons
            # (Looping Pandas is slow.)
            data[pair] = df_analyzed[headers].values.tolist()
        return data

    def _get_close_rate(self, sell_row: Tuple, trade: LocalTrade,
                        sell: SellCheckTuple, trade_dur: int) -> float:
        """
        Get close rate for backtesting result
        """
        # Special handling if high or low hit STOP_LOSS or ROI
        if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
            if trade.stop_loss > sell_row[HIGH_IDX]:
                # our stoploss was already higher than candle high,
                # possibly due to a cancelled trade exit.
                # sell at open price.
                return sell_row[OPEN_IDX]

            # Special case: trailing triggers within same candle as trade opened. Assume most
            # pessimistic price movement, which is moving just enough to arm stoploss and
            # immediately going down to stop price.
            if sell.sell_type == SellType.TRAILING_STOP_LOSS and trade_dur == 0:
                if (not self.strategy.use_custom_stoploss
                        and self.strategy.trailing_stop
                        and self.strategy.trailing_only_offset_is_reached and
                        self.strategy.trailing_stop_positive_offset is not None
                        and self.strategy.trailing_stop_positive):
                    # Worst case: price reaches stop_positive_offset and dives down.
                    stop_rate = (
                        sell_row[OPEN_IDX] *
                        (1 + abs(self.strategy.trailing_stop_positive_offset) -
                         abs(self.strategy.trailing_stop_positive)))
                else:
                    # Worst case: price ticks tiny bit above open and dives down.
                    stop_rate = sell_row[OPEN_IDX] * (1 -
                                                      abs(trade.stop_loss_pct))
                    assert stop_rate < sell_row[HIGH_IDX]
                # Limit lower-end to candle low to avoid sells below the low.
                # This still remains "worst case" - but "worst realistic case".
                return max(sell_row[LOW_IDX], stop_rate)

            # Set close_rate to stoploss
            return trade.stop_loss
        elif sell.sell_type == (SellType.ROI):
            roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur)
            if roi is not None and roi_entry is not None:
                if roi == -1 and roi_entry % self.timeframe_min == 0:
                    # When forceselling with ROI=-1, the roi time will always be equal to trade_dur.
                    # If that entry is a multiple of the timeframe (so on candle open)
                    # - we'll use open instead of close
                    return sell_row[OPEN_IDX]

                # - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
                close_rate = -(trade.open_rate * roi + trade.open_rate *
                               (1 + trade.fee_open)) / (trade.fee_close - 1)

                if (trade_dur > 0 and trade_dur == roi_entry
                        and roi_entry % self.timeframe_min == 0
                        and sell_row[OPEN_IDX] > close_rate):
                    # new ROI entry came into effect.
                    # use Open rate if open_rate > calculated sell rate
                    return sell_row[OPEN_IDX]

                return close_rate

            else:
                # This should not be reached...
                return sell_row[OPEN_IDX]
        else:
            return sell_row[OPEN_IDX]

    def _get_adjust_trade_entry_for_candle(self, trade: LocalTrade,
                                           row: Tuple) -> LocalTrade:

        current_profit = trade.calc_profit_ratio(row[OPEN_IDX])
        min_stake = self.exchange.get_min_pair_stake_amount(
            trade.pair, row[OPEN_IDX], -0.1)
        max_stake = self.wallets.get_available_stake_amount()
        stake_amount = strategy_safe_wrapper(
            self.strategy.adjust_trade_position,
            default_retval=None)(trade=trade,
                                 current_time=row[DATE_IDX].to_pydatetime(),
                                 current_rate=row[OPEN_IDX],
                                 current_profit=current_profit,
                                 min_stake=min_stake,
                                 max_stake=max_stake)

        # Check if we should increase our position
        if stake_amount is not None and stake_amount > 0.0:
            pos_trade = self._enter_trade(trade.pair, row, stake_amount, trade)
            if pos_trade is not None:
                return pos_trade

        return trade

    def _get_sell_trade_entry_for_candle(
            self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]:

        # Check if we need to adjust our current positions
        if self.strategy.position_adjustment_enable:
            trade = self._get_adjust_trade_entry_for_candle(trade, sell_row)

        sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
        sell = self.strategy.should_sell(
            trade,
            sell_row[OPEN_IDX],  # type: ignore
            sell_candle_time,
            sell_row[BUY_IDX],
            sell_row[SELL_IDX],
            low=sell_row[LOW_IDX],
            high=sell_row[HIGH_IDX])

        if sell.sell_flag:
            trade.close_date = sell_candle_time

            trade_dur = int(
                (trade.close_date_utc - trade.open_date_utc).total_seconds() //
                60)
            closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
            # call the custom exit price,with default value as previous closerate
            current_profit = trade.calc_profit_ratio(closerate)
            if sell.sell_type in (SellType.SELL_SIGNAL, SellType.CUSTOM_SELL):
                # Custom exit pricing only for sell-signals
                closerate = strategy_safe_wrapper(
                    self.strategy.custom_exit_price,
                    default_retval=closerate)(pair=trade.pair,
                                              trade=trade,
                                              current_time=sell_row[DATE_IDX],
                                              proposed_rate=closerate,
                                              current_profit=current_profit)
            # Use the maximum between close_rate and low as we cannot sell outside of a candle.
            closerate = min(max(closerate, sell_row[LOW_IDX]),
                            sell_row[HIGH_IDX])

            # Confirm trade exit:
            time_in_force = self.strategy.order_time_in_force['sell']
            if not strategy_safe_wrapper(self.strategy.confirm_trade_exit,
                                         default_retval=True)(
                                             pair=trade.pair,
                                             trade=trade,
                                             order_type='limit',
                                             amount=trade.amount,
                                             rate=closerate,
                                             time_in_force=time_in_force,
                                             sell_reason=sell.sell_reason,
                                             current_time=sell_candle_time):
                return None

            trade.sell_reason = sell.sell_reason

            # Checks and adds an exit tag, after checking that the length of the
            # sell_row has the length for an exit tag column
            if (len(sell_row) > EXIT_TAG_IDX
                    and sell_row[EXIT_TAG_IDX] is not None
                    and len(sell_row[EXIT_TAG_IDX]) > 0):
                trade.sell_reason = sell_row[EXIT_TAG_IDX]

            trade.close(closerate, show_msg=False)
            return trade

        return None

    def _get_sell_trade_entry(self, trade: LocalTrade,
                              sell_row: Tuple) -> Optional[LocalTrade]:
        if self.timeframe_detail and trade.pair in self.detail_data:
            sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
            sell_candle_end = sell_candle_time + timedelta(
                minutes=self.timeframe_min)

            detail_data = self.detail_data[trade.pair]
            detail_data = detail_data.loc[
                (detail_data['date'] >= sell_candle_time)
                & (detail_data['date'] < sell_candle_end)].copy()
            if len(detail_data) == 0:
                # Fall back to "regular" data if no detail data was found for this candle
                return self._get_sell_trade_entry_for_candle(trade, sell_row)
            detail_data.loc[:, 'buy'] = sell_row[BUY_IDX]
            detail_data.loc[:, 'sell'] = sell_row[SELL_IDX]
            detail_data.loc[:, 'buy_tag'] = sell_row[BUY_TAG_IDX]
            detail_data.loc[:, 'exit_tag'] = sell_row[EXIT_TAG_IDX]
            headers = [
                'date', 'buy', 'open', 'close', 'sell', 'low', 'high',
                'buy_tag', 'exit_tag'
            ]
            for det_row in detail_data[headers].values.tolist():
                res = self._get_sell_trade_entry_for_candle(trade, det_row)
                if res:
                    return res

            return None

        else:
            return self._get_sell_trade_entry_for_candle(trade, sell_row)

    def _enter_trade(
            self,
            pair: str,
            row: Tuple,
            stake_amount: Optional[float] = None,
            trade: Optional[LocalTrade] = None) -> Optional[LocalTrade]:

        # let's call the custom entry price, using the open price as default price
        propose_rate = strategy_safe_wrapper(
            self.strategy.custom_entry_price, default_retval=row[OPEN_IDX])(
                pair=pair,
                current_time=row[DATE_IDX].to_pydatetime(),
                proposed_rate=row[OPEN_IDX])  # default value is the open rate

        # Move rate to within the candle's low/high rate
        propose_rate = min(max(propose_rate, row[LOW_IDX]), row[HIGH_IDX])

        min_stake_amount = self.exchange.get_min_pair_stake_amount(
            pair, propose_rate, -0.05) or 0
        max_stake_amount = self.wallets.get_available_stake_amount()

        pos_adjust = trade is not None
        if not pos_adjust:
            try:
                stake_amount = self.wallets.get_trade_stake_amount(pair, None)
            except DependencyException:
                return trade

            stake_amount = strategy_safe_wrapper(
                self.strategy.custom_stake_amount,
                default_retval=stake_amount)(
                    pair=pair,
                    current_time=row[DATE_IDX].to_pydatetime(),
                    current_rate=propose_rate,
                    proposed_stake=stake_amount,
                    min_stake=min_stake_amount,
                    max_stake=max_stake_amount)

        stake_amount = self.wallets.validate_stake_amount(
            pair, stake_amount, min_stake_amount)

        if not stake_amount:
            # In case of pos adjust, still return the original trade
            # If not pos adjust, trade is None
            return trade

        order_type = self.strategy.order_types['buy']
        time_in_force = self.strategy.order_time_in_force['sell']
        # Confirm trade entry:
        if not pos_adjust:
            if not strategy_safe_wrapper(
                    self.strategy.confirm_trade_entry, default_retval=True)(
                        pair=pair,
                        order_type=order_type,
                        amount=stake_amount,
                        rate=propose_rate,
                        time_in_force=time_in_force,
                        current_time=row[DATE_IDX].to_pydatetime()):
                return None

        if stake_amount and (not min_stake_amount
                             or stake_amount > min_stake_amount):
            amount = round(stake_amount / propose_rate, 8)
            if trade is None:
                # Enter trade
                has_buy_tag = len(row) >= BUY_TAG_IDX + 1
                trade = LocalTrade(
                    pair=pair,
                    open_rate=propose_rate,
                    open_date=row[DATE_IDX].to_pydatetime(),
                    stake_amount=stake_amount,
                    amount=amount,
                    fee_open=self.fee,
                    fee_close=self.fee,
                    is_open=True,
                    buy_tag=row[BUY_TAG_IDX] if has_buy_tag else None,
                    exchange='backtesting',
                    orders=[])

            order = Order(ft_is_open=False,
                          ft_pair=trade.pair,
                          symbol=trade.pair,
                          ft_order_side="buy",
                          side="buy",
                          order_type="market",
                          status="closed",
                          price=propose_rate,
                          average=propose_rate,
                          amount=amount,
                          filled=amount,
                          cost=stake_amount + trade.fee_open)
            trade.orders.append(order)
            if pos_adjust:
                trade.recalc_trade_from_orders()

        return trade

    def handle_left_open(self, open_trades: Dict[str, List[LocalTrade]],
                         data: Dict[str, List[Tuple]]) -> List[LocalTrade]:
        """
        Handling of left open trades at the end of backtesting
        """
        trades = []
        for pair in open_trades.keys():
            if len(open_trades[pair]) > 0:
                for trade in open_trades[pair]:
                    sell_row = data[pair][-1]

                    trade.close_date = sell_row[DATE_IDX].to_pydatetime()
                    trade.sell_reason = SellType.FORCE_SELL.value
                    trade.close(sell_row[OPEN_IDX], show_msg=False)
                    LocalTrade.close_bt_trade(trade)
                    # Deepcopy object to have wallets update correctly
                    trade1 = deepcopy(trade)
                    trade1.is_open = True
                    trades.append(trade1)
        return trades

    def trade_slot_available(self, max_open_trades: int,
                             open_trade_count: int) -> bool:
        # Always allow trades when max_open_trades is enabled.
        if max_open_trades <= 0 or open_trade_count < max_open_trades:
            return True
        # Rejected trade
        self.rejected_trades += 1
        return False

    def backtest(self,
                 processed: Dict,
                 start_date: datetime,
                 end_date: datetime,
                 max_open_trades: int = 0,
                 position_stacking: bool = False,
                 enable_protections: bool = False) -> Dict[str, Any]:
        """
        Implement backtesting functionality

        NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
        Of course try to not have ugly code. By some accessor are sometime slower than functions.
        Avoid extensive logging in this method and functions it calls.

        :param processed: a processed dictionary with format {pair, data}, which gets cleared to
        optimize memory usage!
        :param start_date: backtesting timerange start datetime
        :param end_date: backtesting timerange end datetime
        :param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited
        :param position_stacking: do we allow position stacking?
        :param enable_protections: Should protections be enabled?
        :return: DataFrame with trades (results of backtesting)
        """
        trades: List[LocalTrade] = []
        self.prepare_backtest(enable_protections)

        # Use dict of lists with data for performance
        # (looping lists is a lot faster than pandas DataFrames)
        data: Dict = self._get_ohlcv_as_lists(processed)

        # Indexes per pair, so some pairs are allowed to have a missing start.
        indexes: Dict = defaultdict(int)
        tmp = start_date + timedelta(minutes=self.timeframe_min)

        open_trades: Dict[str, List[LocalTrade]] = defaultdict(list)
        open_trade_count = 0

        self.progress.init_step(
            BacktestState.BACKTEST,
            int((end_date - start_date) /
                timedelta(minutes=self.timeframe_min)))

        # Loop timerange and get candle for each pair at that point in time
        while tmp <= end_date:
            open_trade_count_start = open_trade_count
            self.check_abort()
            for i, pair in enumerate(data):
                row_index = indexes[pair]
                try:
                    # Row is treated as "current incomplete candle".
                    # Buy / sell signals are shifted by 1 to compensate for this.
                    row = data[pair][row_index]
                except IndexError:
                    # missing Data for one pair at the end.
                    # Warnings for this are shown during data loading
                    continue

                # Waits until the time-counter reaches the start of the data for this pair.
                if row[DATE_IDX] > tmp:
                    continue

                row_index += 1
                indexes[pair] = row_index
                self.dataprovider._set_dataframe_max_index(row_index)

                # without positionstacking, we can only have one open trade per pair.
                # max_open_trades must be respected
                # don't open on the last row
                if ((position_stacking or len(open_trades[pair]) == 0)
                        and self.trade_slot_available(max_open_trades,
                                                      open_trade_count_start)
                        and tmp != end_date and row[BUY_IDX] == 1
                        and row[SELL_IDX] != 1
                        and not PairLocks.is_pair_locked(pair, row[DATE_IDX])):
                    trade = self._enter_trade(pair, row)
                    if trade:
                        # TODO: hacky workaround to avoid opening > max_open_trades
                        # This emulates previous behaviour - not sure if this is correct
                        # Prevents buying if the trade-slot was freed in this candle
                        open_trade_count_start += 1
                        open_trade_count += 1
                        # logger.debug(f"{pair} - Emulate creation of new trade: {trade}.")
                        open_trades[pair].append(trade)
                        LocalTrade.add_bt_trade(trade)

                for trade in list(open_trades[pair]):
                    # also check the buying candle for sell conditions.
                    trade_entry = self._get_sell_trade_entry(trade, row)
                    # Sell occurred
                    if trade_entry:
                        # logger.debug(f"{pair} - Backtesting sell {trade}")
                        open_trade_count -= 1
                        open_trades[pair].remove(trade)

                        LocalTrade.close_bt_trade(trade)
                        trades.append(trade_entry)
                        if enable_protections:
                            self.protections.stop_per_pair(pair, row[DATE_IDX])
                            self.protections.global_stop(tmp)

            # Move time one configured time_interval ahead.
            self.progress.increment()
            tmp += timedelta(minutes=self.timeframe_min)

        trades += self.handle_left_open(open_trades, data=data)
        self.wallets.update()

        results = trade_list_to_dataframe(trades)
        return {
            'results':
            results,
            'config':
            self.strategy.config,
            'locks':
            PairLocks.get_all_locks(),
            'rejected_signals':
            self.rejected_trades,
            'final_balance':
            self.wallets.get_total(self.strategy.config['stake_currency']),
        }

    def backtest_one_strategy(self, strat: IStrategy, data: Dict[str,
                                                                 DataFrame],
                              timerange: TimeRange):
        self.progress.init_step(BacktestState.ANALYZE, 0)

        logger.info("Running backtesting for Strategy %s",
                    strat.get_strategy_name())
        backtest_start_time = datetime.now(timezone.utc)
        self._set_strategy(strat)

        strategy_safe_wrapper(self.strategy.bot_loop_start,
                              supress_error=True)()

        # Use max_open_trades in backtesting, except --disable-max-market-positions is set
        if self.config.get('use_max_market_positions', True):
            # Must come from strategy config, as the strategy may modify this setting.
            max_open_trades = self.strategy.config['max_open_trades']
        else:
            logger.info(
                'Ignoring max_open_trades (--disable-max-market-positions was used) ...'
            )
            max_open_trades = 0

        # need to reprocess data every time to populate signals
        preprocessed = self.strategy.advise_all_indicators(data)

        # Trim startup period from analyzed dataframe
        preprocessed_tmp = trim_dataframes(preprocessed, timerange,
                                           self.required_startup)

        if not preprocessed_tmp:
            raise OperationalException(
                "No data left after adjusting for startup candles.")

        # Use preprocessed_tmp for date generation (the trimmed dataframe).
        # Backtesting will re-trim the dataframes after buy/sell signal generation.
        min_date, max_date = history.get_timerange(preprocessed_tmp)
        logger.info(
            f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'({(max_date - min_date).days} days).')
        # Execute backtest and store results
        results = self.backtest(
            processed=preprocessed,
            start_date=min_date,
            end_date=max_date,
            max_open_trades=max_open_trades,
            position_stacking=self.config.get('position_stacking', False),
            enable_protections=self.config.get('enable_protections', False),
        )
        backtest_end_time = datetime.now(timezone.utc)
        results.update({
            'run_id':
            self.run_ids.get(strat.get_strategy_name(), ''),
            'backtest_start_time':
            int(backtest_start_time.timestamp()),
            'backtest_end_time':
            int(backtest_end_time.timestamp()),
        })
        self.all_results[self.strategy.get_strategy_name()] = results

        return min_date, max_date

    def _get_min_cached_backtest_date(self):
        min_backtest_date = None
        backtest_cache_age = self.config.get('backtest_cache',
                                             constants.BACKTEST_CACHE_DEFAULT)
        if self.timerange.stopts == 0 or datetime.fromtimestamp(
                self.timerange.stopts,
                tz=timezone.utc) > datetime.now(tz=timezone.utc):
            logger.warning(
                'Backtest result caching disabled due to use of open-ended timerange.'
            )
        elif backtest_cache_age == 'day':
            min_backtest_date = datetime.now(tz=timezone.utc) - timedelta(
                days=1)
        elif backtest_cache_age == 'week':
            min_backtest_date = datetime.now(tz=timezone.utc) - timedelta(
                weeks=1)
        elif backtest_cache_age == 'month':
            min_backtest_date = datetime.now(tz=timezone.utc) - timedelta(
                weeks=4)
        return min_backtest_date

    def load_prior_backtest(self):
        self.run_ids = {
            strategy.get_strategy_name(): get_strategy_run_id(strategy)
            for strategy in self.strategylist
        }

        # Load previous result that will be updated incrementally.
        # This can be circumvented in certain instances in combination with downloading more data
        min_backtest_date = self._get_min_cached_backtest_date()
        if min_backtest_date is not None:
            self.results = find_existing_backtest_stats(
                self.config['user_data_dir'] / 'backtest_results',
                self.run_ids, min_backtest_date)

    def start(self) -> None:
        """
        Run backtesting end-to-end
        :return: None
        """
        data: Dict[str, Any] = {}

        data, timerange = self.load_bt_data()
        self.load_bt_data_detail()
        logger.info("Dataload complete. Calculating indicators")

        self.load_prior_backtest()

        for strat in self.strategylist:
            if self.results and strat.get_strategy_name(
            ) in self.results['strategy']:
                # When previous result hash matches - reuse that result and skip backtesting.
                logger.info(
                    f'Reusing result of previous backtest for {strat.get_strategy_name()}'
                )
                continue
            min_date, max_date = self.backtest_one_strategy(
                strat, data, timerange)

        # Update old results with new ones.
        if len(self.all_results) > 0:
            results = generate_backtest_stats(data,
                                              self.all_results,
                                              min_date=min_date,
                                              max_date=max_date)
            if self.results:
                self.results['metadata'].update(results['metadata'])
                self.results['strategy'].update(results['strategy'])
                self.results['strategy_comparison'].extend(
                    results['strategy_comparison'])
            else:
                self.results = results

            if self.config.get('export', 'none') == 'trades':
                store_backtest_stats(self.config['exportfilename'],
                                     self.results)

        # Results may be mixed up now. Sort them so they follow --strategy-list order.
        if 'strategy_list' in self.config and len(self.results) > 0:
            self.results['strategy_comparison'] = sorted(
                self.results['strategy_comparison'],
                key=lambda c: self.config['strategy_list'].index(c['key']))
            self.results['strategy'] = dict(
                sorted(
                    self.results['strategy'].items(),
                    key=lambda kv: self.config['strategy_list'].index(kv[0])))

        if len(self.strategylist) > 0:
            # Show backtest results
            show_backtest_results(self.config, self.results)
示例#2
0
class Backtesting:
    """
    Backtesting class, this class contains all the logic to run a backtest

    To run a backtest:
    backtesting = Backtesting(config)
    backtesting.start()
    """
    def __init__(self, config: Dict[str, Any]) -> None:

        LoggingMixin.show_output = False
        self.config = config

        # Reset keys for backtesting
        remove_credentials(self.config)
        self.strategylist: List[IStrategy] = []
        self.all_results: Dict[str, Dict] = {}

        self.exchange = ExchangeResolver.load_exchange(
            self.config['exchange']['name'], self.config)
        self.dataprovider = DataProvider(self.config, None)

        if self.config.get('strategy_list', None):
            for strat in list(self.config['strategy_list']):
                stratconf = deepcopy(self.config)
                stratconf['strategy'] = strat
                self.strategylist.append(
                    StrategyResolver.load_strategy(stratconf))
                validate_config_consistency(stratconf)

        else:
            # No strategy list specified, only one strategy
            self.strategylist.append(
                StrategyResolver.load_strategy(self.config))
            validate_config_consistency(self.config)

        if "timeframe" not in self.config:
            raise OperationalException(
                "Timeframe (ticker interval) needs to be set in either "
                "configuration or as cli argument `--timeframe 5m`")
        self.timeframe = str(self.config.get('timeframe'))
        self.timeframe_min = timeframe_to_minutes(self.timeframe)

        self.pairlists = PairListManager(self.exchange, self.config)
        if 'VolumePairList' in self.pairlists.name_list:
            raise OperationalException(
                "VolumePairList not allowed for backtesting.")
        if 'PerformanceFilter' in self.pairlists.name_list:
            raise OperationalException(
                "PerformanceFilter not allowed for backtesting.")

        if len(self.strategylist
               ) > 1 and 'PrecisionFilter' in self.pairlists.name_list:
            raise OperationalException(
                "PrecisionFilter not allowed for backtesting multiple strategies."
            )

        self.dataprovider.add_pairlisthandler(self.pairlists)
        self.pairlists.refresh_pairlist()

        if len(self.pairlists.whitelist) == 0:
            raise OperationalException("No pair in whitelist.")

        if config.get('fee', None) is not None:
            self.fee = config['fee']
        else:
            self.fee = self.exchange.get_fee(
                symbol=self.pairlists.whitelist[0])

        Trade.use_db = False
        Trade.reset_trades()
        PairLocks.timeframe = self.config['timeframe']
        PairLocks.use_db = False
        PairLocks.reset_locks()

        self.wallets = Wallets(self.config, self.exchange, log=False)

        # Get maximum required startup period
        self.required_startup = max(
            [strat.startup_candle_count for strat in self.strategylist])

    def __del__(self):
        LoggingMixin.show_output = True
        PairLocks.use_db = True
        Trade.use_db = True

    def _set_strategy(self, strategy: IStrategy):
        """
        Load strategy into backtesting
        """
        self.strategy: IStrategy = strategy
        strategy.dp = self.dataprovider
        # Set stoploss_on_exchange to false for backtesting,
        # since a "perfect" stoploss-sell is assumed anyway
        # And the regular "stoploss" function would not apply to that case
        self.strategy.order_types['stoploss_on_exchange'] = False
        if self.config.get('enable_protections', False):
            conf = self.config
            if hasattr(strategy, 'protections'):
                conf = deepcopy(conf)
                conf['protections'] = strategy.protections
            self.protections = ProtectionManager(self.config,
                                                 strategy.protections)

    def load_bt_data(self) -> Tuple[Dict[str, DataFrame], TimeRange]:
        """
        Loads backtest data and returns the data combined with the timerange
        as tuple.
        """
        timerange = TimeRange.parse_timerange(None if self.config.get(
            'timerange') is None else str(self.config.get('timerange')))

        data = history.load_data(
            datadir=self.config['datadir'],
            pairs=self.pairlists.whitelist,
            timeframe=self.timeframe,
            timerange=timerange,
            startup_candles=self.required_startup,
            fail_without_data=True,
            data_format=self.config.get('dataformat_ohlcv', 'json'),
        )

        min_date, max_date = history.get_timerange(data)

        logger.info(
            f'Loading data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'({(max_date - min_date).days} days).')

        # Adjust startts forward if not enough data is available
        timerange.adjust_start_if_necessary(
            timeframe_to_seconds(self.timeframe), self.required_startup,
            min_date)

        return data, timerange

    def prepare_backtest(self, enable_protections):
        """
        Backtesting setup method - called once for every call to "backtest()".
        """
        PairLocks.use_db = False
        PairLocks.timeframe = self.config['timeframe']
        Trade.use_db = False
        PairLocks.reset_locks()
        Trade.reset_trades()
        self.rejected_trades = 0
        self.dataprovider.clear_cache()

    def _get_ohlcv_as_lists(
            self, processed: Dict[str, DataFrame]) -> Dict[str, Tuple]:
        """
        Helper function to convert a processed dataframes into lists for performance reasons.

        Used by backtest() - so keep this optimized for performance.
        """
        # Every change to this headers list must evaluate further usages of the resulting tuple
        # and eventually change the constants for indexes at the top
        headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
        data: Dict = {}
        # Create dict with data
        for pair, pair_data in processed.items():
            if not pair_data.empty:
                pair_data.loc[:, 'buy'] = 0  # cleanup if buy_signal is exist
                pair_data.loc[:, 'sell'] = 0  # cleanup if sell_signal is exist

            df_analyzed = self.strategy.advise_sell(
                self.strategy.advise_buy(pair_data, {'pair': pair}),
                {'pair': pair})[headers].copy()

            # To avoid using data from future, we use buy/sell signals shifted
            # from the previous candle
            df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
            df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1)

            df_analyzed.drop(df_analyzed.head(1).index, inplace=True)

            # Convert from Pandas to list for performance reasons
            # (Looping Pandas is slow.)
            data[pair] = df_analyzed.values.tolist()
        return data

    def _get_close_rate(self, sell_row: Tuple, trade: LocalTrade,
                        sell: SellCheckTuple, trade_dur: int) -> float:
        """
        Get close rate for backtesting result
        """
        # Special handling if high or low hit STOP_LOSS or ROI
        if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
            if trade.stop_loss > sell_row[HIGH_IDX]:
                # our stoploss was already higher than candle high,
                # possibly due to a cancelled trade exit.
                # sell at open price.
                return sell_row[OPEN_IDX]

            # Special case: trailing triggers within same candle as trade opened. Assume most
            # pessimistic price movement, which is moving just enough to arm stoploss and
            # immediately going down to stop price.
            if (sell.sell_type == SellType.TRAILING_STOP_LOSS
                    and trade_dur == 0
                    and self.strategy.trailing_stop_positive):
                if self.strategy.trailing_only_offset_is_reached:
                    # Worst case: price reaches stop_positive_offset and dives down.
                    stop_rate = (
                        sell_row[OPEN_IDX] *
                        (1 + abs(self.strategy.trailing_stop_positive_offset) -
                         abs(self.strategy.trailing_stop_positive)))
                else:
                    # Worst case: price ticks tiny bit above open and dives down.
                    stop_rate = sell_row[OPEN_IDX] * (
                        1 - abs(self.strategy.trailing_stop_positive))
                    assert stop_rate < sell_row[HIGH_IDX]
                return stop_rate

            # Set close_rate to stoploss
            return trade.stop_loss
        elif sell.sell_type == (SellType.ROI):
            roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur)
            if roi is not None and roi_entry is not None:
                if roi == -1 and roi_entry % self.timeframe_min == 0:
                    # When forceselling with ROI=-1, the roi time will always be equal to trade_dur.
                    # If that entry is a multiple of the timeframe (so on candle open)
                    # - we'll use open instead of close
                    return sell_row[OPEN_IDX]

                # - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
                close_rate = -(trade.open_rate * roi + trade.open_rate *
                               (1 + trade.fee_open)) / (trade.fee_close - 1)

                if (trade_dur > 0 and trade_dur == roi_entry
                        and roi_entry % self.timeframe_min == 0
                        and sell_row[OPEN_IDX] > close_rate):
                    # new ROI entry came into effect.
                    # use Open rate if open_rate > calculated sell rate
                    return sell_row[OPEN_IDX]

                # Use the maximum between close_rate and low as we
                # cannot sell outside of a candle.
                # Applies when a new ROI setting comes in place and the whole candle is above that.
                return min(max(close_rate, sell_row[LOW_IDX]),
                           sell_row[HIGH_IDX])

            else:
                # This should not be reached...
                return sell_row[OPEN_IDX]
        else:
            return sell_row[OPEN_IDX]

    def _get_sell_trade_entry(self, trade: LocalTrade,
                              sell_row: Tuple) -> Optional[LocalTrade]:

        sell = self.strategy.should_sell(
            trade,
            sell_row[OPEN_IDX],  # type: ignore
            sell_row[DATE_IDX].to_pydatetime(),
            sell_row[BUY_IDX],
            sell_row[SELL_IDX],
            low=sell_row[LOW_IDX],
            high=sell_row[HIGH_IDX])

        if sell.sell_flag:
            trade.close_date = sell_row[DATE_IDX].to_pydatetime()
            trade.sell_reason = sell.sell_reason
            trade_dur = int(
                (trade.close_date_utc - trade.open_date_utc).total_seconds() //
                60)
            closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)

            # Confirm trade exit:
            time_in_force = self.strategy.order_time_in_force['sell']
            if not strategy_safe_wrapper(
                    self.strategy.confirm_trade_exit, default_retval=True)(
                        pair=trade.pair,
                        trade=trade,
                        order_type='limit',
                        amount=trade.amount,
                        rate=closerate,
                        time_in_force=time_in_force,
                        sell_reason=sell.sell_reason,
                        current_time=sell_row[DATE_IDX].to_pydatetime()):
                return None

            trade.close(closerate, show_msg=False)
            return trade

        return None

    def _enter_trade(self, pair: str, row: List) -> Optional[LocalTrade]:
        try:
            stake_amount = self.wallets.get_trade_stake_amount(pair, None)
        except DependencyException:
            return None
        min_stake_amount = self.exchange.get_min_pair_stake_amount(
            pair, row[OPEN_IDX], -0.05)

        order_type = self.strategy.order_types['buy']
        time_in_force = self.strategy.order_time_in_force['sell']
        # Confirm trade entry:
        if not strategy_safe_wrapper(
                self.strategy.confirm_trade_entry, default_retval=True)(
                    pair=pair,
                    order_type=order_type,
                    amount=stake_amount,
                    rate=row[OPEN_IDX],
                    time_in_force=time_in_force,
                    current_time=row[DATE_IDX].to_pydatetime()):
            return None

        if stake_amount and (not min_stake_amount
                             or stake_amount > min_stake_amount):
            # Enter trade
            trade = LocalTrade(
                pair=pair,
                open_rate=row[OPEN_IDX],
                open_date=row[DATE_IDX].to_pydatetime(),
                stake_amount=stake_amount,
                amount=round(stake_amount / row[OPEN_IDX], 8),
                fee_open=self.fee,
                fee_close=self.fee,
                is_open=True,
                exchange='backtesting',
            )
            return trade
        return None

    def handle_left_open(self, open_trades: Dict[str, List[LocalTrade]],
                         data: Dict[str, List[Tuple]]) -> List[LocalTrade]:
        """
        Handling of left open trades at the end of backtesting
        """
        trades = []
        for pair in open_trades.keys():
            if len(open_trades[pair]) > 0:
                for trade in open_trades[pair]:
                    sell_row = data[pair][-1]

                    trade.close_date = sell_row[DATE_IDX].to_pydatetime()
                    trade.sell_reason = SellType.FORCE_SELL.value
                    trade.close(sell_row[OPEN_IDX], show_msg=False)
                    LocalTrade.close_bt_trade(trade)
                    # Deepcopy object to have wallets update correctly
                    trade1 = deepcopy(trade)
                    trade1.is_open = True
                    trades.append(trade1)
        return trades

    def trade_slot_available(self, max_open_trades: int,
                             open_trade_count: int) -> bool:
        # Always allow trades when max_open_trades is enabled.
        if max_open_trades <= 0 or open_trade_count < max_open_trades:
            return True
        # Rejected trade
        self.rejected_trades += 1
        return False

    def backtest(self,
                 processed: Dict,
                 start_date: datetime,
                 end_date: datetime,
                 max_open_trades: int = 0,
                 position_stacking: bool = False,
                 enable_protections: bool = False) -> Dict[str, Any]:
        """
        Implement backtesting functionality

        NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
        Of course try to not have ugly code. By some accessor are sometime slower than functions.
        Avoid extensive logging in this method and functions it calls.

        :param processed: a processed dictionary with format {pair, data}
        :param start_date: backtesting timerange start datetime
        :param end_date: backtesting timerange end datetime
        :param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited
        :param position_stacking: do we allow position stacking?
        :param enable_protections: Should protections be enabled?
        :return: DataFrame with trades (results of backtesting)
        """
        trades: List[LocalTrade] = []
        self.prepare_backtest(enable_protections)

        # Update dataprovider cache
        for pair, dataframe in processed.items():
            self.dataprovider._set_cached_df(pair, self.timeframe, dataframe)

        # Use dict of lists with data for performance
        # (looping lists is a lot faster than pandas DataFrames)
        data: Dict = self._get_ohlcv_as_lists(processed)

        # Indexes per pair, so some pairs are allowed to have a missing start.
        indexes: Dict = defaultdict(int)
        tmp = start_date + timedelta(minutes=self.timeframe_min)

        open_trades: Dict[str, List[LocalTrade]] = defaultdict(list)
        open_trade_count = 0

        # Loop timerange and get candle for each pair at that point in time
        while tmp <= end_date:
            open_trade_count_start = open_trade_count

            for i, pair in enumerate(data):
                row_index = indexes[pair]
                try:
                    row = data[pair][row_index]
                except IndexError:
                    # missing Data for one pair at the end.
                    # Warnings for this are shown during data loading
                    continue

                # Waits until the time-counter reaches the start of the data for this pair.
                if row[DATE_IDX] > tmp:
                    continue

                row_index += 1
                self.dataprovider._set_dataframe_max_index(row_index)
                indexes[pair] = row_index

                # without positionstacking, we can only have one open trade per pair.
                # max_open_trades must be respected
                # don't open on the last row
                if ((position_stacking or len(open_trades[pair]) == 0)
                        and self.trade_slot_available(max_open_trades,
                                                      open_trade_count_start)
                        and tmp != end_date and row[BUY_IDX] == 1
                        and row[SELL_IDX] != 1
                        and not PairLocks.is_pair_locked(pair, row[DATE_IDX])):
                    trade = self._enter_trade(pair, row)
                    if trade:
                        # TODO: hacky workaround to avoid opening > max_open_trades
                        # This emulates previous behaviour - not sure if this is correct
                        # Prevents buying if the trade-slot was freed in this candle
                        open_trade_count_start += 1
                        open_trade_count += 1
                        # logger.debug(f"{pair} - Emulate creation of new trade: {trade}.")
                        open_trades[pair].append(trade)
                        LocalTrade.add_bt_trade(trade)

                for trade in open_trades[pair]:
                    # also check the buying candle for sell conditions.
                    trade_entry = self._get_sell_trade_entry(trade, row)
                    # Sell occured
                    if trade_entry:
                        # logger.debug(f"{pair} - Backtesting sell {trade}")
                        open_trade_count -= 1
                        open_trades[pair].remove(trade)

                        LocalTrade.close_bt_trade(trade)
                        trades.append(trade_entry)
                        if enable_protections:
                            self.protections.stop_per_pair(pair, row[DATE_IDX])
                            self.protections.global_stop(tmp)

            # Move time one configured time_interval ahead.
            tmp += timedelta(minutes=self.timeframe_min)

        trades += self.handle_left_open(open_trades, data=data)
        self.wallets.update()

        results = trade_list_to_dataframe(trades)
        return {
            'results':
            results,
            'config':
            self.strategy.config,
            'locks':
            PairLocks.get_all_locks(),
            'rejected_signals':
            self.rejected_trades,
            'final_balance':
            self.wallets.get_total(self.strategy.config['stake_currency']),
        }

    def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, Any],
                              timerange: TimeRange):
        logger.info("Running backtesting for Strategy %s",
                    strat.get_strategy_name())
        backtest_start_time = datetime.now(timezone.utc)
        self._set_strategy(strat)

        strategy_safe_wrapper(self.strategy.bot_loop_start,
                              supress_error=True)()

        # Use max_open_trades in backtesting, except --disable-max-market-positions is set
        if self.config.get('use_max_market_positions', True):
            # Must come from strategy config, as the strategy may modify this setting.
            max_open_trades = self.strategy.config['max_open_trades']
        else:
            logger.info(
                'Ignoring max_open_trades (--disable-max-market-positions was used) ...'
            )
            max_open_trades = 0

        # need to reprocess data every time to populate signals
        preprocessed = self.strategy.ohlcvdata_to_dataframe(data)

        # Trim startup period from analyzed dataframe
        preprocessed = trim_dataframes(preprocessed, timerange,
                                       self.required_startup)

        if not preprocessed:
            raise OperationalException(
                "No data left after adjusting for startup candles.")

        min_date, max_date = history.get_timerange(preprocessed)
        logger.info(
            f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
            f'({(max_date - min_date).days} days).')
        # Execute backtest and store results
        results = self.backtest(
            processed=preprocessed,
            start_date=min_date,
            end_date=max_date,
            max_open_trades=max_open_trades,
            position_stacking=self.config.get('position_stacking', False),
            enable_protections=self.config.get('enable_protections', False),
        )
        backtest_end_time = datetime.now(timezone.utc)
        results.update({
            'backtest_start_time':
            int(backtest_start_time.timestamp()),
            'backtest_end_time':
            int(backtest_end_time.timestamp()),
        })
        self.all_results[self.strategy.get_strategy_name()] = results

        return min_date, max_date

    def start(self) -> None:
        """
        Run backtesting end-to-end
        :return: None
        """
        data: Dict[str, Any] = {}

        data, timerange = self.load_bt_data()
        logger.info("Dataload complete. Calculating indicators")

        for strat in self.strategylist:
            min_date, max_date = self.backtest_one_strategy(
                strat, data, timerange)
        if len(self.strategylist) > 0:
            stats = generate_backtest_stats(data,
                                            self.all_results,
                                            min_date=min_date,
                                            max_date=max_date)

            if self.config.get('export', 'none') == 'trades':
                store_backtest_stats(self.config['exportfilename'], stats)

            # Show backtest results
            show_backtest_results(self.config, stats)
示例#3
0
class FreqtradeBot(object):
    """
    Freqtrade is the main class of the bot.
    This is from here the bot start its logic.
    """
    def __init__(self, config: Dict[str, Any]) -> None:
        """
        Init all variables and object the bot need to work
        :param config: configuration dict, you can use the Configuration.get_config()
        method to get the config dict.
        """

        logger.info(
            'Starting freqtrade %s',
            __version__,
        )

        # Init bot states
        self.state = State.STOPPED

        # Init objects
        self.config = config
        self.strategy: IStrategy = StrategyResolver(self.config).strategy

        self.rpc: RPCManager = RPCManager(self)
        self.persistence = None
        self.exchange = Exchange(self.config)
        self.wallets = Wallets(self.exchange)
        pairlistname = self.config.get('pairlist',
                                       {}).get('method', 'StaticPairList')
        self.pairlists = PairListResolver(pairlistname, self,
                                          self.config).pairlist

        # Initializing Edge only if enabled
        self.edge = Edge(self.config, self.exchange, self.strategy) if \
            self.config.get('edge', {}).get('enabled', False) else None

        self.active_pair_whitelist: List[str] = self.config['exchange'][
            'pair_whitelist']
        self._init_modules()

    def _init_modules(self) -> None:
        """
        Initializes all modules and updates the config
        :return: None
        """
        # Initialize all modules

        persistence.init(self.config)

        # Set initial application state
        initial_state = self.config.get('initial_state')

        if initial_state:
            self.state = State[initial_state.upper()]
        else:
            self.state = State.STOPPED

    def cleanup(self) -> None:
        """
        Cleanup pending resources on an already stopped bot
        :return: None
        """
        logger.info('Cleaning up modules ...')
        self.rpc.cleanup()
        persistence.cleanup()

    def worker(self, old_state: State = None) -> State:
        """
        Trading routine that must be run at each loop
        :param old_state: the previous service state from the previous call
        :return: current service state
        """
        # Log state transition
        state = self.state
        if state != old_state:
            self.rpc.send_msg({
                'type': RPCMessageType.STATUS_NOTIFICATION,
                'status': f'{state.name.lower()}'
            })
            logger.info('Changing state to: %s', state.name)
            if state == State.RUNNING:
                self.rpc.startup_messages(self.config, self.pairlists)

        if state == State.STOPPED:
            time.sleep(1)
        elif state == State.RUNNING:
            min_secs = self.config.get('internals',
                                       {}).get('process_throttle_secs',
                                               constants.PROCESS_THROTTLE_SECS)

            self._throttle(func=self._process, min_secs=min_secs)
        return state

    def _throttle(self, func: Callable[..., Any], min_secs: float, *args,
                  **kwargs) -> Any:
        """
        Throttles the given callable that it
        takes at least `min_secs` to finish execution.
        :param func: Any callable
        :param min_secs: minimum execution time in seconds
        :return: Any
        """
        start = time.time()
        result = func(*args, **kwargs)
        end = time.time()
        duration = max(min_secs - (end - start), 0.0)
        logger.debug('Throttling %s for %.2f seconds', func.__name__, duration)
        time.sleep(duration)
        return result

    def _process(self) -> bool:
        """
        Queries the persistence layer for open trades and handles them,
        otherwise a new trade is created.
        :return: True if one or more trades has been created or closed, False otherwise
        """
        state_changed = False
        try:
            # Refresh whitelist
            self.pairlists.refresh_pairlist()
            self.active_pair_whitelist = self.pairlists.whitelist

            # Calculating Edge positiong
            # Should be called before refresh_tickers
            # Otherwise it will override cached klines in exchange
            # with delta value (klines only from last refresh_pairs)
            if self.edge:
                self.edge.calculate()
                self.active_pair_whitelist = self.edge.adjust(
                    self.active_pair_whitelist)

            # Query trades from persistence layer
            trades = Trade.query.filter(Trade.is_open.is_(True)).all()

            # Extend active-pair whitelist with pairs from open trades
            # ensures that tickers are downloaded for open trades
            self.active_pair_whitelist.extend([
                trade.pair for trade in trades
                if trade.pair not in self.active_pair_whitelist
            ])

            # Refreshing candles
            self.exchange.refresh_tickers(self.active_pair_whitelist,
                                          self.strategy.ticker_interval)

            # First process current opened trades
            for trade in trades:
                state_changed |= self.process_maybe_execute_sell(trade)

            # Then looking for buy opportunities
            if len(trades) < self.config['max_open_trades']:
                state_changed = self.process_maybe_execute_buy()

            if 'unfilledtimeout' in self.config:
                # Check and handle any timed out open orders
                self.check_handle_timedout()
                Trade.session.flush()

        except TemporaryError as error:
            logger.warning('%s, retrying in 30 seconds...', error)
            time.sleep(constants.RETRY_TIMEOUT)
        except OperationalException:
            tb = traceback.format_exc()
            hint = 'Issue `/start` if you think it is safe to restart.'
            self.rpc.send_msg({
                'type':
                RPCMessageType.STATUS_NOTIFICATION,
                'status':
                f'OperationalException:\n```\n{tb}```{hint}'
            })
            logger.exception('OperationalException. Stopping trader ...')
            self.state = State.STOPPED
        return state_changed

    def get_target_bid(self, pair: str, ticker: Dict[str, float]) -> float:
        """
        Calculates bid target between current ask price and last price
        :param ticker: Ticker to use for getting Ask and Last Price
        :return: float: Price
        """
        if ticker['ask'] < ticker['last']:
            ticker_rate = ticker['ask']
        else:
            balance = self.config['bid_strategy']['ask_last_balance']
            ticker_rate = ticker['ask'] + balance * (ticker['last'] -
                                                     ticker['ask'])

        used_rate = ticker_rate
        config_bid_strategy = self.config.get('bid_strategy', {})
        if 'use_order_book' in config_bid_strategy and\
                config_bid_strategy.get('use_order_book', False):
            logger.info('Getting price from order book')
            order_book_top = config_bid_strategy.get('order_book_top', 1)
            order_book = self.exchange.get_order_book(pair, order_book_top)
            logger.debug('order_book %s', order_book)
            # top 1 = index 0
            order_book_rate = order_book['bids'][order_book_top - 1][0]
            # if ticker has lower rate, then use ticker ( usefull if down trending )
            logger.info('...top %s order book buy rate %0.8f', order_book_top,
                        order_book_rate)
            if ticker_rate < order_book_rate:
                logger.info('...using ticker rate instead %0.8f', ticker_rate)
                used_rate = ticker_rate
            else:
                used_rate = order_book_rate
        else:
            logger.info('Using Last Ask / Last Price')
            used_rate = ticker_rate

        return used_rate

    def _get_trade_stake_amount(self, pair) -> Optional[float]:
        """
        Check if stake amount can be fulfilled with the available balance
        for the stake currency
        :return: float: Stake Amount
        """
        if self.edge:
            return self.edge.stake_amount(
                pair, self.wallets.get_free(self.config['stake_currency']),
                self.wallets.get_total(self.config['stake_currency']),
                Trade.total_open_trades_stakes())
        else:
            stake_amount = self.config['stake_amount']

        avaliable_amount = self.wallets.get_free(self.config['stake_currency'])

        if stake_amount == constants.UNLIMITED_STAKE_AMOUNT:
            open_trades = len(
                Trade.query.filter(Trade.is_open.is_(True)).all())
            if open_trades >= self.config['max_open_trades']:
                logger.warning(
                    'Can\'t open a new trade: max number of trades is reached')
                return None
            return avaliable_amount / (self.config['max_open_trades'] -
                                       open_trades)

        # Check if stake_amount is fulfilled
        if avaliable_amount < stake_amount:
            raise DependencyException(
                'Available balance(%f %s) is lower than stake amount(%f %s)' %
                (avaliable_amount, self.config['stake_currency'], stake_amount,
                 self.config['stake_currency']))

        return stake_amount

    def _get_min_pair_stake_amount(self, pair: str,
                                   price: float) -> Optional[float]:
        markets = self.exchange.get_markets()
        markets = [m for m in markets if m['symbol'] == pair]
        if not markets:
            raise ValueError(
                f'Can\'t get market information for symbol {pair}')

        market = markets[0]

        if 'limits' not in market:
            return None

        min_stake_amounts = []
        limits = market['limits']
        if ('cost' in limits and 'min' in limits['cost']
                and limits['cost']['min'] is not None):
            min_stake_amounts.append(limits['cost']['min'])

        if ('amount' in limits and 'min' in limits['amount']
                and limits['amount']['min'] is not None):
            min_stake_amounts.append(limits['amount']['min'] * price)

        if not min_stake_amounts:
            return None

        amount_reserve_percent = 1 - 0.05  # reserve 5% + stoploss
        if self.strategy.stoploss is not None:
            amount_reserve_percent += self.strategy.stoploss
        # it should not be more than 50%
        amount_reserve_percent = max(amount_reserve_percent, 0.5)
        return min(min_stake_amounts) / amount_reserve_percent

    def create_trade(self) -> bool:
        """
        Checks the implemented trading indicator(s) for a randomly picked pair,
        if one pair triggers the buy_signal a new trade record gets created
        :return: True if a trade object has been created and persisted, False otherwise
        """
        interval = self.strategy.ticker_interval
        whitelist = copy.deepcopy(self.active_pair_whitelist)

        # Remove currently opened and latest pairs from whitelist
        for trade in Trade.query.filter(Trade.is_open.is_(True)).all():
            if trade.pair in whitelist:
                whitelist.remove(trade.pair)
                logger.debug('Ignoring %s in pair whitelist', trade.pair)

        if not whitelist:
            raise DependencyException('No currency pairs in whitelist')

        # running get_signal on historical data fetched
        for _pair in whitelist:
            (buy, sell) = self.strategy.get_signal(_pair, interval,
                                                   self.exchange.klines(_pair))
            if buy and not sell:
                stake_amount = self._get_trade_stake_amount(_pair)
                if not stake_amount:
                    return False

                logger.info(
                    'Buy signal found: about create a new trade with stake_amount: %f ...',
                    stake_amount)

                bidstrat_check_depth_of_market = self.config.get('bid_strategy', {}).\
                    get('check_depth_of_market', {})
                if (bidstrat_check_depth_of_market.get('enabled', False)) and\
                        (bidstrat_check_depth_of_market.get('bids_to_ask_delta', 0) > 0):
                    if self._check_depth_of_market_buy(
                            _pair, bidstrat_check_depth_of_market):
                        return self.execute_buy(_pair, stake_amount)
                    else:
                        return False
                return self.execute_buy(_pair, stake_amount)

        return False

    def _check_depth_of_market_buy(self, pair: str, conf: Dict) -> bool:
        """
        Checks depth of market before executing a buy
        """
        conf_bids_to_ask_delta = conf.get('bids_to_ask_delta', 0)
        logger.info('checking depth of market for %s', pair)
        order_book = self.exchange.get_order_book(pair, 1000)
        order_book_data_frame = order_book_to_dataframe(
            order_book['bids'], order_book['asks'])
        order_book_bids = order_book_data_frame['b_size'].sum()
        order_book_asks = order_book_data_frame['a_size'].sum()
        bids_ask_delta = order_book_bids / order_book_asks
        logger.info('bids: %s, asks: %s, delta: %s', order_book_bids,
                    order_book_asks, bids_ask_delta)
        if bids_ask_delta >= conf_bids_to_ask_delta:
            return True
        return False

    def execute_buy(self,
                    pair: str,
                    stake_amount: float,
                    price: Optional[float] = None) -> bool:
        """
        Executes a limit buy for the given pair
        :param pair: pair for which we want to create a LIMIT_BUY
        :return: None
        """
        pair_s = pair.replace('_', '/')
        pair_url = self.exchange.get_pair_detail_url(pair)
        stake_currency = self.config['stake_currency']
        fiat_currency = self.config.get('fiat_display_currency', None)
        time_in_force = self.strategy.order_time_in_force['buy']

        if price:
            buy_limit_requested = price
        else:
            # Calculate amount
            buy_limit_requested = self.get_target_bid(
                pair, self.exchange.get_ticker(pair))

        min_stake_amount = self._get_min_pair_stake_amount(
            pair_s, buy_limit_requested)
        if min_stake_amount is not None and min_stake_amount > stake_amount:
            logger.warning(
                f'Can\'t open a new trade for {pair_s}: stake amount'
                f' is too small ({stake_amount} < {min_stake_amount})')
            return False

        amount = stake_amount / buy_limit_requested

        order = self.exchange.buy(pair=pair,
                                  ordertype=self.strategy.order_types['buy'],
                                  amount=amount,
                                  rate=buy_limit_requested,
                                  time_in_force=time_in_force)
        order_id = order['id']
        order_status = order.get('status', None)

        # we assume the order is executed at the price requested
        buy_limit_filled_price = buy_limit_requested

        if order_status == 'expired' or order_status == 'rejected':
            order_type = self.strategy.order_types['buy']
            order_tif = self.strategy.order_time_in_force['buy']

            # return false if the order is not filled
            if float(order['filled']) == 0:
                logger.warning(
                    'Buy %s order with time in force %s for %s is %s by %s.'
                    ' zero amount is fulfilled.', order_tif, order_type,
                    pair_s, order_status, self.exchange.name)
                return False
            else:
                # the order is partially fulfilled
                # in case of IOC orders we can check immediately
                # if the order is fulfilled fully or partially
                logger.warning(
                    'Buy %s order with time in force %s for %s is %s by %s.'
                    ' %s amount fulfilled out of %s (%s remaining which is canceled).',
                    order_tif, order_type, pair_s, order_status,
                    self.exchange.name, order['filled'], order['amount'],
                    order['remaining'])
                stake_amount = order['cost']
                amount = order['amount']
                buy_limit_filled_price = order['price']
                order_id = None

        # in case of FOK the order may be filled immediately and fully
        elif order_status == 'closed':
            stake_amount = order['cost']
            amount = order['amount']
            buy_limit_filled_price = order['price']
            order_id = None

        self.rpc.send_msg({
            'type': RPCMessageType.BUY_NOTIFICATION,
            'exchange': self.exchange.name.capitalize(),
            'pair': pair_s,
            'market_url': pair_url,
            'limit': buy_limit_filled_price,
            'stake_amount': stake_amount,
            'stake_currency': stake_currency,
            'fiat_currency': fiat_currency
        })

        # Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
        fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
        trade = Trade(pair=pair,
                      stake_amount=stake_amount,
                      amount=amount,
                      fee_open=fee,
                      fee_close=fee,
                      open_rate=buy_limit_filled_price,
                      open_rate_requested=buy_limit_requested,
                      open_date=datetime.utcnow(),
                      exchange=self.exchange.id,
                      open_order_id=order_id,
                      strategy=self.strategy.get_strategy_name(),
                      ticker_interval=constants.TICKER_INTERVAL_MINUTES[
                          self.config['ticker_interval']])

        Trade.session.add(trade)
        Trade.session.flush()

        # Updating wallets
        self.wallets.update()

        return True

    def process_maybe_execute_buy(self) -> bool:
        """
        Tries to execute a buy trade in a safe way
        :return: True if executed
        """
        try:
            # Create entity and execute trade
            if self.create_trade():
                return True

            logger.info(
                'Found no buy signals for whitelisted currencies. Trying again..'
            )
            return False
        except DependencyException as exception:
            logger.warning('Unable to create trade: %s', exception)
            return False

    def process_maybe_execute_sell(self, trade: Trade) -> bool:
        """
        Tries to execute a sell trade
        :return: True if executed
        """
        try:
            # Get order details for actual price per unit
            if trade.open_order_id:
                # Update trade with order values
                logger.info('Found open order for %s', trade)
                order = self.exchange.get_order(trade.open_order_id,
                                                trade.pair)
                # Try update amount (binance-fix)
                try:
                    new_amount = self.get_real_amount(trade, order)
                    if order['amount'] != new_amount:
                        order['amount'] = new_amount
                        # Fee was applied, so set to 0
                        trade.fee_open = 0

                except OperationalException as exception:
                    logger.warning("could not update trade amount: %s",
                                   exception)

                trade.update(order)

            if self.strategy.order_types.get(
                    'stoploss_on_exchange') and trade.is_open:
                result = self.handle_stoploss_on_exchange(trade)
                if result:
                    self.wallets.update()
                    return result

            if trade.is_open and trade.open_order_id is None:
                # Check if we can sell our current pair
                result = self.handle_trade(trade)

                # Updating wallets if any trade occured
                if result:
                    self.wallets.update()

                return result

        except DependencyException as exception:
            logger.warning('Unable to sell trade: %s', exception)
        return False

    def get_real_amount(self, trade: Trade, order: Dict) -> float:
        """
        Get real amount for the trade
        Necessary for self.exchanges which charge fees in base currency (e.g. binance)
        """
        order_amount = order['amount']
        # Only run for closed orders
        if trade.fee_open == 0 or order['status'] == 'open':
            return order_amount

        # use fee from order-dict if possible
        if 'fee' in order and order['fee'] and (order['fee'].keys() >=
                                                {'currency', 'cost'}):
            if trade.pair.startswith(order['fee']['currency']):
                new_amount = order_amount - order['fee']['cost']
                logger.info(
                    "Applying fee on amount for %s (from %s to %s) from Order",
                    trade, order['amount'], new_amount)
                return new_amount

        # Fallback to Trades
        trades = self.exchange.get_trades_for_order(trade.open_order_id,
                                                    trade.pair,
                                                    trade.open_date)

        if len(trades) == 0:
            logger.info(
                "Applying fee on amount for %s failed: myTrade-Dict empty found",
                trade)
            return order_amount
        amount = 0
        fee_abs = 0
        for exectrade in trades:
            amount += exectrade['amount']
            if "fee" in exectrade and (exectrade['fee'].keys() >=
                                       {'currency', 'cost'}):
                # only applies if fee is in quote currency!
                if trade.pair.startswith(exectrade['fee']['currency']):
                    fee_abs += exectrade['fee']['cost']

        if amount != order_amount:
            logger.warning(
                f"amount {amount} does not match amount {trade.amount}")
            raise OperationalException("Half bought? Amounts don't match")
        real_amount = amount - fee_abs
        if fee_abs != 0:
            logger.info(f"""Applying fee on amount for {trade} \
(from {order_amount} to {real_amount}) from Trades""")
        return real_amount

    def handle_trade(self, trade: Trade) -> bool:
        """
        Sells the current pair if the threshold is reached and updates the trade record.
        :return: True if trade has been sold, False otherwise
        """
        if not trade.is_open:
            raise ValueError(f'attempt to handle closed trade: {trade}')

        logger.debug('Handling %s ...', trade)
        sell_rate = self.exchange.get_ticker(trade.pair)['bid']

        (buy, sell) = (False, False)
        experimental = self.config.get('experimental', {})
        if experimental.get('use_sell_signal') or experimental.get(
                'ignore_roi_if_buy_signal'):
            (buy,
             sell) = self.strategy.get_signal(trade.pair,
                                              self.strategy.ticker_interval,
                                              self.exchange.klines(trade.pair))

        config_ask_strategy = self.config.get('ask_strategy', {})
        if config_ask_strategy.get('use_order_book', False):
            logger.info('Using order book for selling...')
            # logger.debug('Order book %s',orderBook)
            order_book_min = config_ask_strategy.get('order_book_min', 1)
            order_book_max = config_ask_strategy.get('order_book_max', 1)

            order_book = self.exchange.get_order_book(trade.pair,
                                                      order_book_max)

            for i in range(order_book_min, order_book_max + 1):
                order_book_rate = order_book['asks'][i - 1][0]

                # if orderbook has higher rate (high profit),
                # use orderbook, otherwise just use bids rate
                logger.info('  order book asks top %s: %0.8f', i,
                            order_book_rate)
                if sell_rate < order_book_rate:
                    sell_rate = order_book_rate

                if self.check_sell(trade, sell_rate, buy, sell):
                    return True
                    break
        else:
            logger.debug('checking sell')
            if self.check_sell(trade, sell_rate, buy, sell):
                return True

        logger.debug('Found no sell signal for %s.', trade)
        return False

    def handle_stoploss_on_exchange(self, trade: Trade) -> bool:
        """
        Check if trade is fulfilled in which case the stoploss
        on exchange should be added immediately if stoploss on exchnage
        is enabled.
        """

        result = False

        # If trade is open and the buy order is fulfilled but there is no stoploss,
        # then we add a stoploss on exchange
        if not trade.open_order_id and not trade.stoploss_order_id:
            if self.edge:
                stoploss = self.edge.stoploss(pair=trade.pair)
            else:
                stoploss = self.strategy.stoploss

            stop_price = trade.open_rate * (1 + stoploss)

            # limit price should be less than stop price.
            # 0.98 is arbitrary here.
            limit_price = stop_price * 0.98

            stoploss_order_id = self.exchange.stoploss_limit(
                pair=trade.pair,
                amount=trade.amount,
                stop_price=stop_price,
                rate=limit_price)['id']
            trade.stoploss_order_id = str(stoploss_order_id)

        # Or the trade open and there is already a stoploss on exchange.
        # so we check if it is hit ...
        elif trade.stoploss_order_id:
            logger.debug('Handling stoploss on exchange %s ...', trade)
            order = self.exchange.get_order(trade.stoploss_order_id,
                                            trade.pair)
            if order['status'] == 'closed':
                trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
                trade.update(order)
                result = True
            else:
                result = False
        return result

    def check_sell(self, trade: Trade, sell_rate: float, buy: bool,
                   sell: bool) -> bool:
        if self.edge:
            stoploss = self.edge.stoploss(trade.pair)
            should_sell = self.strategy.should_sell(trade,
                                                    sell_rate,
                                                    datetime.utcnow(),
                                                    buy,
                                                    sell,
                                                    force_stoploss=stoploss)
        else:
            should_sell = self.strategy.should_sell(trade, sell_rate,
                                                    datetime.utcnow(), buy,
                                                    sell)

        if should_sell.sell_flag:
            self.execute_sell(trade, sell_rate, should_sell.sell_type)
            logger.info('executed sell, reason: %s', should_sell.sell_type)
            return True
        return False

    def check_handle_timedout(self) -> None:
        """
        Check if any orders are timed out and cancel if neccessary
        :param timeoutvalue: Number of minutes until order is considered timed out
        :return: None
        """
        buy_timeout = self.config['unfilledtimeout']['buy']
        sell_timeout = self.config['unfilledtimeout']['sell']
        buy_timeoutthreashold = arrow.utcnow().shift(
            minutes=-buy_timeout).datetime
        sell_timeoutthreashold = arrow.utcnow().shift(
            minutes=-sell_timeout).datetime

        for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all():
            try:
                # FIXME: Somehow the query above returns results
                # where the open_order_id is in fact None.
                # This is probably because the record got
                # updated via /forcesell in a different thread.
                if not trade.open_order_id:
                    continue
                order = self.exchange.get_order(trade.open_order_id,
                                                trade.pair)
            except (RequestException, DependencyException):
                logger.info('Cannot query order for %s due to %s', trade,
                            traceback.format_exc())
                continue
            ordertime = arrow.get(order['datetime']).datetime

            # Check if trade is still actually open
            if float(order['remaining']) == 0.0:
                self.wallets.update()
                continue

            # Check if trade is still actually open
            if order['status'] == 'open':
                if order['side'] == 'buy' and ordertime < buy_timeoutthreashold:
                    self.handle_timedout_limit_buy(trade, order)
                    self.wallets.update()
                elif order[
                        'side'] == 'sell' and ordertime < sell_timeoutthreashold:
                    self.handle_timedout_limit_sell(trade, order)
                    self.wallets.update()

    # FIX: 20180110, why is cancel.order unconditionally here, whereas
    #                it is conditionally called in the
    #                handle_timedout_limit_sell()?
    def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
        """Buy timeout - cancel order
        :return: True if order was fully cancelled
        """
        pair_s = trade.pair.replace('_', '/')
        self.exchange.cancel_order(trade.open_order_id, trade.pair)
        if order['remaining'] == order['amount']:
            # if trade is not partially completed, just delete the trade
            Trade.session.delete(trade)
            Trade.session.flush()
            logger.info('Buy order timeout for %s.', trade)
            self.rpc.send_msg({
                'type':
                RPCMessageType.STATUS_NOTIFICATION,
                'status':
                f'Unfilled buy order for {pair_s} cancelled due to timeout'
            })
            return True

        # if trade is partially complete, edit the stake details for the trade
        # and close the order
        trade.amount = order['amount'] - order['remaining']
        trade.stake_amount = trade.amount * trade.open_rate
        trade.open_order_id = None
        logger.info('Partial buy order timeout for %s.', trade)
        self.rpc.send_msg({
            'type':
            RPCMessageType.STATUS_NOTIFICATION,
            'status':
            f'Remaining buy order for {pair_s} cancelled due to timeout'
        })
        return False

    # FIX: 20180110, should cancel_order() be cond. or unconditionally called?
    def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool:
        """
        Sell timeout - cancel order and update trade
        :return: True if order was fully cancelled
        """
        pair_s = trade.pair.replace('_', '/')
        if order['remaining'] == order['amount']:
            # if trade is not partially completed, just cancel the trade
            self.exchange.cancel_order(trade.open_order_id, trade.pair)
            trade.close_rate = None
            trade.close_profit = None
            trade.close_date = None
            trade.is_open = True
            trade.open_order_id = None
            self.rpc.send_msg({
                'type':
                RPCMessageType.STATUS_NOTIFICATION,
                'status':
                f'Unfilled sell order for {pair_s} cancelled due to timeout'
            })
            logger.info('Sell order timeout for %s.', trade)
            return True

        # TODO: figure out how to handle partially complete sell orders
        return False

    def execute_sell(self, trade: Trade, limit: float,
                     sell_reason: SellType) -> None:
        """
        Executes a limit sell for the given trade and limit
        :param trade: Trade instance
        :param limit: limit rate for the sell order
        :param sellreason: Reason the sell was triggered
        :return: None
        """
        sell_type = 'sell'
        if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
            sell_type = 'stoploss'

        # if stoploss is on exchange and we are on dry_run mode,
        # we consider the sell price stop price
        if self.config.get('dry_run', False) and sell_type == 'stoploss' \
           and self.strategy.order_types['stoploss_on_exchange']:
            limit = trade.stop_loss

        # First cancelling stoploss on exchange ...
        if self.strategy.order_types.get(
                'stoploss_on_exchange') and trade.stoploss_order_id:
            self.exchange.cancel_order(trade.stoploss_order_id, trade.pair)

        # Execute sell and update trade record
        order_id = self.exchange.sell(
            pair=str(trade.pair),
            ordertype=self.strategy.order_types[sell_type],
            amount=trade.amount,
            rate=limit,
            time_in_force=self.strategy.order_time_in_force['sell'])['id']

        trade.open_order_id = order_id
        trade.close_rate_requested = limit
        trade.sell_reason = sell_reason.value

        profit_trade = trade.calc_profit(rate=limit)
        current_rate = self.exchange.get_ticker(trade.pair)['bid']
        profit_percent = trade.calc_profit_percent(limit)
        pair_url = self.exchange.get_pair_detail_url(trade.pair)
        gain = "profit" if profit_percent > 0 else "loss"

        msg = {
            'type': RPCMessageType.SELL_NOTIFICATION,
            'exchange': trade.exchange.capitalize(),
            'pair': trade.pair,
            'gain': gain,
            'market_url': pair_url,
            'limit': limit,
            'amount': trade.amount,
            'open_rate': trade.open_rate,
            'current_rate': current_rate,
            'profit_amount': profit_trade,
            'profit_percent': profit_percent,
            'sell_reason': sell_reason.value
        }

        # For regular case, when the configuration exists
        if 'stake_currency' in self.config and 'fiat_display_currency' in self.config:
            stake_currency = self.config['stake_currency']
            fiat_currency = self.config['fiat_display_currency']
            msg.update({
                'stake_currency': stake_currency,
                'fiat_currency': fiat_currency,
            })

        # Send the message
        self.rpc.send_msg(msg)
        Trade.session.flush()
示例#4
0
class FreqtradeBot(object):
    """
    Freqtrade is the main class of the bot.
    This is from here the bot start its logic.
    """

    def __init__(self, config: Dict[str, Any]) -> None:
        """
        Init all variables and objects the bot needs to work
        :param config: configuration dict, you can use Configuration.get_config()
        to get the config dict.
        """

        logger.info('Starting freqtrade %s', __version__)

        # Init bot state
        self.state = State.STOPPED

        # Init objects
        self.config = config

        self.strategy: IStrategy = StrategyResolver(self.config).strategy

        self.rpc: RPCManager = RPCManager(self)

        self.exchange = ExchangeResolver(self.config['exchange']['name'], self.config).exchange

        self.wallets = Wallets(self.config, self.exchange)
        self.dataprovider = DataProvider(self.config, self.exchange)

        # Attach Dataprovider to Strategy baseclass
        IStrategy.dp = self.dataprovider
        # Attach Wallets to Strategy baseclass
        IStrategy.wallets = self.wallets

        pairlistname = self.config.get('pairlist', {}).get('method', 'StaticPairList')
        self.pairlists = PairListResolver(pairlistname, self, self.config).pairlist

        # Initializing Edge only if enabled
        self.edge = Edge(self.config, self.exchange, self.strategy) if \
            self.config.get('edge', {}).get('enabled', False) else None

        self.active_pair_whitelist: List[str] = self.config['exchange']['pair_whitelist']

        persistence.init(self.config.get('db_url', None),
                         clean_open_orders=self.config.get('dry_run', False))

        # Set initial bot state from config
        initial_state = self.config.get('initial_state')
        self.state = State[initial_state.upper()] if initial_state else State.STOPPED

    def cleanup(self) -> None:
        """
        Cleanup pending resources on an already stopped bot
        :return: None
        """
        logger.info('Cleaning up modules ...')

        self.rpc.cleanup()
        persistence.cleanup()

    def startup(self) -> None:
        """
        Called on startup and after reloading the bot - triggers notifications and
        performs startup tasks
        """
        self.rpc.startup_messages(self.config, self.pairlists)
        if not self.edge:
            # Adjust stoploss if it was changed
            Trade.stoploss_reinitialization(self.strategy.stoploss)

    def process(self) -> bool:
        """
        Queries the persistence layer for open trades and handles them,
        otherwise a new trade is created.
        :return: True if one or more trades has been created or closed, False otherwise
        """
        state_changed = False

        # Check whether markets have to be reloaded
        self.exchange._reload_markets()

        # Refresh whitelist
        self.pairlists.refresh_pairlist()
        self.active_pair_whitelist = self.pairlists.whitelist

        # Calculating Edge positioning
        if self.edge:
            self.edge.calculate()
            self.active_pair_whitelist = self.edge.adjust(self.active_pair_whitelist)

        # Query trades from persistence layer
        trades = Trade.get_open_trades()

        # Extend active-pair whitelist with pairs from open trades
        # It ensures that tickers are downloaded for open trades
        self._extend_whitelist_with_trades(self.active_pair_whitelist, trades)

        # Refreshing candles
        self.dataprovider.refresh(self._create_pair_whitelist(self.active_pair_whitelist),
                                  self.strategy.informative_pairs())

        # First process current opened trades
        for trade in trades:
            state_changed |= self.process_maybe_execute_sell(trade)

        # Then looking for buy opportunities
        if len(trades) < self.config['max_open_trades']:
            state_changed = self.process_maybe_execute_buy()

        if 'unfilledtimeout' in self.config:
            # Check and handle any timed out open orders
            self.check_handle_timedout()
            Trade.session.flush()

        return state_changed

    def _extend_whitelist_with_trades(self, whitelist: List[str], trades: List[Any]):
        """
        Extend whitelist with pairs from open trades
        """
        whitelist.extend([trade.pair for trade in trades if trade.pair not in whitelist])

    def _create_pair_whitelist(self, pairs: List[str]) -> List[Tuple[str, str]]:
        """
        Create pair-whitelist tuple with (pair, ticker_interval)
        """
        return [(pair, self.config['ticker_interval']) for pair in pairs]

    def get_target_bid(self, pair: str, tick: Dict = None) -> float:
        """
        Calculates bid target between current ask price and last price
        :return: float: Price
        """
        config_bid_strategy = self.config.get('bid_strategy', {})
        if 'use_order_book' in config_bid_strategy and\
                config_bid_strategy.get('use_order_book', False):
            logger.info('Getting price from order book')
            order_book_top = config_bid_strategy.get('order_book_top', 1)
            order_book = self.exchange.get_order_book(pair, order_book_top)
            logger.debug('order_book %s', order_book)
            # top 1 = index 0
            order_book_rate = order_book['bids'][order_book_top - 1][0]
            logger.info('...top %s order book buy rate %0.8f', order_book_top, order_book_rate)
            used_rate = order_book_rate
        else:
            if not tick:
                logger.info('Using Last Ask / Last Price')
                ticker = self.exchange.get_ticker(pair)
            else:
                ticker = tick
            if ticker['ask'] < ticker['last']:
                ticker_rate = ticker['ask']
            else:
                balance = self.config['bid_strategy']['ask_last_balance']
                ticker_rate = ticker['ask'] + balance * (ticker['last'] - ticker['ask'])
            used_rate = ticker_rate

        return used_rate

    def _get_trade_stake_amount(self, pair) -> Optional[float]:
        """
        Check if stake amount can be fulfilled with the available balance
        for the stake currency
        :return: float: Stake Amount
        """
        if self.edge:
            return self.edge.stake_amount(
                pair,
                self.wallets.get_free(self.config['stake_currency']),
                self.wallets.get_total(self.config['stake_currency']),
                Trade.total_open_trades_stakes()
            )
        else:
            stake_amount = self.config['stake_amount']

        available_amount = self.wallets.get_free(self.config['stake_currency'])

        if stake_amount == constants.UNLIMITED_STAKE_AMOUNT:
            open_trades = len(Trade.get_open_trades())
            if open_trades >= self.config['max_open_trades']:
                logger.warning('Can\'t open a new trade: max number of trades is reached')
                return None
            return available_amount / (self.config['max_open_trades'] - open_trades)

        # Check if stake_amount is fulfilled
        if available_amount < stake_amount:
            raise DependencyException(
                f"Available balance({available_amount} {self.config['stake_currency']}) is "
                f"lower than stake amount({stake_amount} {self.config['stake_currency']})"
            )

        return stake_amount

    def _get_min_pair_stake_amount(self, pair: str, price: float) -> Optional[float]:
        try:
            market = self.exchange.markets[pair]
        except KeyError:
            raise ValueError(f"Can't get market information for symbol {pair}")

        if 'limits' not in market:
            return None

        min_stake_amounts = []
        limits = market['limits']
        if ('cost' in limits and 'min' in limits['cost']
                and limits['cost']['min'] is not None):
            min_stake_amounts.append(limits['cost']['min'])

        if ('amount' in limits and 'min' in limits['amount']
                and limits['amount']['min'] is not None):
            min_stake_amounts.append(limits['amount']['min'] * price)

        if not min_stake_amounts:
            return None

        # reserve some percent defined in config (5% default) + stoploss
        amount_reserve_percent = 1.0 - self.config.get('amount_reserve_percent',
                                                       constants.DEFAULT_AMOUNT_RESERVE_PERCENT)
        if self.strategy.stoploss is not None:
            amount_reserve_percent += self.strategy.stoploss
        # it should not be more than 50%
        amount_reserve_percent = max(amount_reserve_percent, 0.5)
        return min(min_stake_amounts) / amount_reserve_percent

    def create_trade(self) -> bool:
        """
        Checks the implemented trading indicator(s) for a randomly picked pair,
        if one pair triggers the buy_signal a new trade record gets created
        :return: True if a trade object has been created and persisted, False otherwise
        """
        interval = self.strategy.ticker_interval
        whitelist = copy.deepcopy(self.active_pair_whitelist)

        if not whitelist:
            logger.warning("Whitelist is empty.")
            return False

        # Remove currently opened and latest pairs from whitelist
        for trade in Trade.get_open_trades():
            if trade.pair in whitelist:
                whitelist.remove(trade.pair)
                logger.debug('Ignoring %s in pair whitelist', trade.pair)

        if not whitelist:
            logger.info("No currency pair in whitelist, but checking to sell open trades.")
            return False

        # running get_signal on historical data fetched
        for _pair in whitelist:
            (buy, sell) = self.strategy.get_signal(
                _pair, interval, self.dataprovider.ohlcv(_pair, self.strategy.ticker_interval))

            if buy and not sell:
                stake_amount = self._get_trade_stake_amount(_pair)
                if not stake_amount:
                    return False

                logger.info(f"Buy signal found: about create a new trade with stake_amount: "
                            f"{stake_amount} ...")

                bidstrat_check_depth_of_market = self.config.get('bid_strategy', {}).\
                    get('check_depth_of_market', {})
                if (bidstrat_check_depth_of_market.get('enabled', False)) and\
                        (bidstrat_check_depth_of_market.get('bids_to_ask_delta', 0) > 0):
                    if self._check_depth_of_market_buy(_pair, bidstrat_check_depth_of_market):
                        return self.execute_buy(_pair, stake_amount)
                    else:
                        return False
                return self.execute_buy(_pair, stake_amount)

        return False

    def _check_depth_of_market_buy(self, pair: str, conf: Dict) -> bool:
        """
        Checks depth of market before executing a buy
        """
        conf_bids_to_ask_delta = conf.get('bids_to_ask_delta', 0)
        logger.info('checking depth of market for %s', pair)
        order_book = self.exchange.get_order_book(pair, 1000)
        order_book_data_frame = order_book_to_dataframe(order_book['bids'], order_book['asks'])
        order_book_bids = order_book_data_frame['b_size'].sum()
        order_book_asks = order_book_data_frame['a_size'].sum()
        bids_ask_delta = order_book_bids / order_book_asks
        logger.info('bids: %s, asks: %s, delta: %s', order_book_bids,
                    order_book_asks, bids_ask_delta)
        if bids_ask_delta >= conf_bids_to_ask_delta:
            return True
        return False

    def execute_buy(self, pair: str, stake_amount: float, price: Optional[float] = None) -> bool:
        """
        Executes a limit buy for the given pair
        :param pair: pair for which we want to create a LIMIT_BUY
        :return: None
        """
        pair_s = pair.replace('_', '/')
        stake_currency = self.config['stake_currency']
        fiat_currency = self.config.get('fiat_display_currency', None)
        time_in_force = self.strategy.order_time_in_force['buy']

        if price:
            buy_limit_requested = price
        else:
            # Calculate amount
            buy_limit_requested = self.get_target_bid(pair)

        min_stake_amount = self._get_min_pair_stake_amount(pair_s, buy_limit_requested)
        if min_stake_amount is not None and min_stake_amount > stake_amount:
            logger.warning(
                f'Can\'t open a new trade for {pair_s}: stake amount '
                f'is too small ({stake_amount} < {min_stake_amount})'
            )
            return False

        amount = stake_amount / buy_limit_requested
        order_type = self.strategy.order_types['buy']
        order = self.exchange.buy(pair=pair, ordertype=order_type,
                                  amount=amount, rate=buy_limit_requested,
                                  time_in_force=time_in_force)
        order_id = order['id']
        order_status = order.get('status', None)

        # we assume the order is executed at the price requested
        buy_limit_filled_price = buy_limit_requested

        if order_status == 'expired' or order_status == 'rejected':
            order_tif = self.strategy.order_time_in_force['buy']

            # return false if the order is not filled
            if float(order['filled']) == 0:
                logger.warning('Buy %s order with time in force %s for %s is %s by %s.'
                               ' zero amount is fulfilled.',
                               order_tif, order_type, pair_s, order_status, self.exchange.name)
                return False
            else:
                # the order is partially fulfilled
                # in case of IOC orders we can check immediately
                # if the order is fulfilled fully or partially
                logger.warning('Buy %s order with time in force %s for %s is %s by %s.'
                               ' %s amount fulfilled out of %s (%s remaining which is canceled).',
                               order_tif, order_type, pair_s, order_status, self.exchange.name,
                               order['filled'], order['amount'], order['remaining']
                               )
                stake_amount = order['cost']
                amount = order['amount']
                buy_limit_filled_price = order['price']
                order_id = None

        # in case of FOK the order may be filled immediately and fully
        elif order_status == 'closed':
            stake_amount = order['cost']
            amount = order['amount']
            buy_limit_filled_price = order['price']

        self.rpc.send_msg({
            'type': RPCMessageType.BUY_NOTIFICATION,
            'exchange': self.exchange.name.capitalize(),
            'pair': pair_s,
            'limit': buy_limit_filled_price,
            'order_type': order_type,
            'stake_amount': stake_amount,
            'stake_currency': stake_currency,
            'fiat_currency': fiat_currency
        })

        # Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
        fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
        trade = Trade(
            pair=pair,
            stake_amount=stake_amount,
            amount=amount,
            fee_open=fee,
            fee_close=fee,
            open_rate=buy_limit_filled_price,
            open_rate_requested=buy_limit_requested,
            open_date=datetime.utcnow(),
            exchange=self.exchange.id,
            open_order_id=order_id,
            strategy=self.strategy.get_strategy_name(),
            ticker_interval=timeframe_to_minutes(self.config['ticker_interval'])
        )

        # Update fees if order is closed
        if order_status == 'closed':
            self.update_trade_state(trade, order)

        Trade.session.add(trade)
        Trade.session.flush()

        # Updating wallets
        self.wallets.update()

        return True

    def process_maybe_execute_buy(self) -> bool:
        """
        Tries to execute a buy trade in a safe way
        :return: True if executed
        """
        try:
            # Create entity and execute trade
            if self.create_trade():
                return True

            logger.info('Found no buy signals for whitelisted currencies. Trying again..')
            return False
        except DependencyException as exception:
            logger.warning('Unable to create trade: %s', exception)
            return False

    def process_maybe_execute_sell(self, trade: Trade) -> bool:
        """
        Tries to execute a sell trade
        :return: True if executed
        """
        try:
            self.update_trade_state(trade)

            if self.strategy.order_types.get('stoploss_on_exchange') and trade.is_open:
                result = self.handle_stoploss_on_exchange(trade)
                if result:
                    self.wallets.update()
                    return result

            if trade.is_open and trade.open_order_id is None:
                # Check if we can sell our current pair
                result = self.handle_trade(trade)

                # Updating wallets if any trade occured
                if result:
                    self.wallets.update()

                return result

        except DependencyException as exception:
            logger.warning('Unable to sell trade: %s', exception)
        return False

    def get_real_amount(self, trade: Trade, order: Dict) -> float:
        """
        Get real amount for the trade
        Necessary for exchanges which charge fees in base currency (e.g. binance)
        """
        order_amount = order['amount']
        # Only run for closed orders
        if trade.fee_open == 0 or order['status'] == 'open':
            return order_amount

        # use fee from order-dict if possible
        if 'fee' in order and order['fee'] and (order['fee'].keys() >= {'currency', 'cost'}):
            if trade.pair.startswith(order['fee']['currency']):
                new_amount = order_amount - order['fee']['cost']
                logger.info("Applying fee on amount for %s (from %s to %s) from Order",
                            trade, order['amount'], new_amount)
                return new_amount

        # Fallback to Trades
        trades = self.exchange.get_trades_for_order(trade.open_order_id, trade.pair,
                                                    trade.open_date)

        if len(trades) == 0:
            logger.info("Applying fee on amount for %s failed: myTrade-Dict empty found", trade)
            return order_amount
        amount = 0
        fee_abs = 0
        for exectrade in trades:
            amount += exectrade['amount']
            if "fee" in exectrade and (exectrade['fee'].keys() >= {'currency', 'cost'}):
                # only applies if fee is in quote currency!
                if trade.pair.startswith(exectrade['fee']['currency']):
                    fee_abs += exectrade['fee']['cost']

        if amount != order_amount:
            logger.warning(f"Amount {amount} does not match amount {trade.amount}")
            raise OperationalException("Half bought? Amounts don't match")
        real_amount = amount - fee_abs
        if fee_abs != 0:
            logger.info(f"Applying fee on amount for {trade} "
                        f"(from {order_amount} to {real_amount}) from Trades")
        return real_amount

    def update_trade_state(self, trade, action_order: dict = None):
        """
        Checks trades with open orders and updates the amount if necessary
        """
        # Get order details for actual price per unit
        if trade.open_order_id:
            # Update trade with order values
            logger.info('Found open order for %s', trade)
            order = action_order or self.exchange.get_order(trade.open_order_id, trade.pair)
            # Try update amount (binance-fix)
            try:
                new_amount = self.get_real_amount(trade, order)
                if order['amount'] != new_amount:
                    order['amount'] = new_amount
                    # Fee was applied, so set to 0
                    trade.fee_open = 0

            except OperationalException as exception:
                logger.warning("Could not update trade amount: %s", exception)

            trade.update(order)

            # Updating wallets when order is closed
            if not trade.is_open:
                self.wallets.update()

    def get_sell_rate(self, pair: str, refresh: bool) -> float:
        """
        Get sell rate - either using get-ticker bid or first bid based on orderbook
        The orderbook portion is only used for rpc messaging, which would otherwise fail
        for BitMex (has no bid/ask in get_ticker)
        or remain static in any other case since it's not updating.
        :return: Bid rate
        """
        config_ask_strategy = self.config.get('ask_strategy', {})
        if config_ask_strategy.get('use_order_book', False):
            logger.debug('Using order book to get sell rate')

            order_book = self.exchange.get_order_book(pair, 1)
            rate = order_book['bids'][0][0]

        else:
            rate = self.exchange.get_ticker(pair, refresh)['bid']
        return rate

    def handle_trade(self, trade: Trade) -> bool:
        """
        Sells the current pair if the threshold is reached and updates the trade record.
        :return: True if trade has been sold, False otherwise
        """
        if not trade.is_open:
            raise ValueError(f'Attempt to handle closed trade: {trade}')

        logger.debug('Handling %s ...', trade)

        (buy, sell) = (False, False)
        experimental = self.config.get('experimental', {})
        if experimental.get('use_sell_signal') or experimental.get('ignore_roi_if_buy_signal'):
            (buy, sell) = self.strategy.get_signal(
                trade.pair, self.strategy.ticker_interval,
                self.dataprovider.ohlcv(trade.pair, self.strategy.ticker_interval))

        config_ask_strategy = self.config.get('ask_strategy', {})
        if config_ask_strategy.get('use_order_book', False):
            logger.info('Using order book for selling...')
            # logger.debug('Order book %s',orderBook)
            order_book_min = config_ask_strategy.get('order_book_min', 1)
            order_book_max = config_ask_strategy.get('order_book_max', 1)

            order_book = self.exchange.get_order_book(trade.pair, order_book_max)

            for i in range(order_book_min, order_book_max + 1):
                order_book_rate = order_book['asks'][i - 1][0]
                logger.info('  order book asks top %s: %0.8f', i, order_book_rate)
                sell_rate = order_book_rate

                if self.check_sell(trade, sell_rate, buy, sell):
                    return True

        else:
            logger.debug('checking sell')
            sell_rate = self.get_sell_rate(trade.pair, True)
            if self.check_sell(trade, sell_rate, buy, sell):
                return True

        logger.debug('Found no sell signal for %s.', trade)
        return False

    def handle_stoploss_on_exchange(self, trade: Trade) -> bool:
        """
        Check if trade is fulfilled in which case the stoploss
        on exchange should be added immediately if stoploss on exchange
        is enabled.
        """

        logger.debug('Handling stoploss on exchange %s ...', trade)

        stoploss_order = None

        try:
            # First we check if there is already a stoploss on exchange
            stoploss_order = self.exchange.get_order(trade.stoploss_order_id, trade.pair) \
                if trade.stoploss_order_id else None
        except InvalidOrderException as exception:
            logger.warning('Unable to fetch stoploss order: %s', exception)

        # If trade open order id does not exist: buy order is fulfilled
        buy_order_fulfilled = not trade.open_order_id

        # Limit price threshold: As limit price should always be below price
        limit_price_pct = 0.99

        # If buy order is fulfilled but there is no stoploss, we add a stoploss on exchange
        if (buy_order_fulfilled and not stoploss_order):
            if self.edge:
                stoploss = self.edge.stoploss(pair=trade.pair)
            else:
                stoploss = self.strategy.stoploss

            stop_price = trade.open_rate * (1 + stoploss)

            # limit price should be less than stop price.
            limit_price = stop_price * limit_price_pct

            try:
                stoploss_order_id = self.exchange.stoploss_limit(
                    pair=trade.pair, amount=trade.amount, stop_price=stop_price, rate=limit_price
                )['id']
                trade.stoploss_order_id = str(stoploss_order_id)
                trade.stoploss_last_update = datetime.now()
                return False

            except DependencyException as exception:
                logger.warning('Unable to place a stoploss order on exchange: %s', exception)

        # If stoploss order is canceled for some reason we add it
        if stoploss_order and stoploss_order['status'] == 'canceled':
            try:
                stoploss_order_id = self.exchange.stoploss_limit(
                    pair=trade.pair, amount=trade.amount,
                    stop_price=trade.stop_loss, rate=trade.stop_loss * limit_price_pct
                )['id']
                trade.stoploss_order_id = str(stoploss_order_id)
                return False
            except DependencyException as exception:
                logger.warning('Stoploss order was cancelled, '
                               'but unable to recreate one: %s', exception)

        # We check if stoploss order is fulfilled
        if stoploss_order and stoploss_order['status'] == 'closed':
            trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
            trade.update(stoploss_order)
            self.notify_sell(trade)
            return True

        # Finally we check if stoploss on exchange should be moved up because of trailing.
        if stoploss_order and self.config.get('trailing_stop', False):
            # if trailing stoploss is enabled we check if stoploss value has changed
            # in which case we cancel stoploss order and put another one with new
            # value immediately
            self.handle_trailing_stoploss_on_exchange(trade, stoploss_order)

        return False

    def handle_trailing_stoploss_on_exchange(self, trade: Trade, order):
        """
        Check to see if stoploss on exchange should be updated
        in case of trailing stoploss on exchange
        :param Trade: Corresponding Trade
        :param order: Current on exchange stoploss order
        :return: None
        """

        if trade.stop_loss > float(order['info']['stopPrice']):
            # we check if the update is neccesary
            update_beat = self.strategy.order_types.get('stoploss_on_exchange_interval', 60)
            if (datetime.utcnow() - trade.stoploss_last_update).total_seconds() > update_beat:
                # cancelling the current stoploss on exchange first
                logger.info('Trailing stoploss: cancelling current stoploss on exchange (id:{%s})'
                            'in order to add another one ...', order['id'])
                try:
                    self.exchange.cancel_order(order['id'], trade.pair)
                except InvalidOrderException:
                    logger.exception(f"Could not cancel stoploss order {order['id']} "
                                     f"for pair {trade.pair}")

                try:
                    # creating the new one
                    stoploss_order_id = self.exchange.stoploss_limit(
                        pair=trade.pair, amount=trade.amount,
                        stop_price=trade.stop_loss, rate=trade.stop_loss * 0.99
                    )['id']
                    trade.stoploss_order_id = str(stoploss_order_id)
                except DependencyException:
                    logger.exception(f"Could create trailing stoploss order "
                                     f"for pair {trade.pair}.")

    def check_sell(self, trade: Trade, sell_rate: float, buy: bool, sell: bool) -> bool:
        if self.edge:
            stoploss = self.edge.stoploss(trade.pair)
            should_sell = self.strategy.should_sell(
                trade, sell_rate, datetime.utcnow(), buy, sell, force_stoploss=stoploss)
        else:
            should_sell = self.strategy.should_sell(trade, sell_rate, datetime.utcnow(), buy, sell)

        if should_sell.sell_flag:
            self.execute_sell(trade, sell_rate, should_sell.sell_type)
            logger.info('executed sell, reason: %s', should_sell.sell_type)
            return True
        return False

    def check_handle_timedout(self) -> None:
        """
        Check if any orders are timed out and cancel if neccessary
        :param timeoutvalue: Number of minutes until order is considered timed out
        :return: None
        """
        buy_timeout = self.config['unfilledtimeout']['buy']
        sell_timeout = self.config['unfilledtimeout']['sell']
        buy_timeoutthreashold = arrow.utcnow().shift(minutes=-buy_timeout).datetime
        sell_timeoutthreashold = arrow.utcnow().shift(minutes=-sell_timeout).datetime

        for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all():
            try:
                # FIXME: Somehow the query above returns results
                # where the open_order_id is in fact None.
                # This is probably because the record got
                # updated via /forcesell in a different thread.
                if not trade.open_order_id:
                    continue
                order = self.exchange.get_order(trade.open_order_id, trade.pair)
            except (RequestException, DependencyException):
                logger.info(
                    'Cannot query order for %s due to %s',
                    trade,
                    traceback.format_exc())
                continue
            ordertime = arrow.get(order['datetime']).datetime

            # Check if trade is still actually open
            if float(order['remaining']) == 0.0:
                self.wallets.update()
                continue

            # Handle cancelled on exchange
            if order['status'] == 'canceled':
                if order['side'] == 'buy':
                    self.handle_buy_order_full_cancel(trade, "canceled on Exchange")
                elif order['side'] == 'sell':
                    self.handle_timedout_limit_sell(trade, order)
                    self.wallets.update()
            # Check if order is still actually open
            elif order['status'] == 'open':
                if order['side'] == 'buy' and ordertime < buy_timeoutthreashold:
                    self.handle_timedout_limit_buy(trade, order)
                    self.wallets.update()
                elif order['side'] == 'sell' and ordertime < sell_timeoutthreashold:
                    self.handle_timedout_limit_sell(trade, order)
                    self.wallets.update()

    def handle_buy_order_full_cancel(self, trade: Trade, reason: str) -> None:
        """Close trade in database and send message"""
        Trade.session.delete(trade)
        Trade.session.flush()
        logger.info('Buy order %s for %s.', reason, trade)
        self.rpc.send_msg({
            'type': RPCMessageType.STATUS_NOTIFICATION,
            'status': f'Unfilled buy order for {trade.pair} {reason}'
        })

    def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
        """Buy timeout - cancel order
        :return: True if order was fully cancelled
        """
        self.exchange.cancel_order(trade.open_order_id, trade.pair)
        if order['remaining'] == order['amount']:
            # if trade is not partially completed, just delete the trade
            self.handle_buy_order_full_cancel(trade, "cancelled due to timeout")
            return True

        # if trade is partially complete, edit the stake details for the trade
        # and close the order
        trade.amount = order['amount'] - order['remaining']
        trade.stake_amount = trade.amount * trade.open_rate
        trade.open_order_id = None
        logger.info('Partial buy order timeout for %s.', trade)
        self.rpc.send_msg({
            'type': RPCMessageType.STATUS_NOTIFICATION,
            'status': f'Remaining buy order for {trade.pair} cancelled due to timeout'
        })
        return False

    def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool:
        """
        Sell timeout - cancel order and update trade
        :return: True if order was fully cancelled
        """
        if order['remaining'] == order['amount']:
            # if trade is not partially completed, just cancel the trade
            if order["status"] != "canceled":
                reason = "due to timeout"
                self.exchange.cancel_order(trade.open_order_id, trade.pair)
                logger.info('Sell order timeout for %s.', trade)
            else:
                reason = "on exchange"
                logger.info('Sell order canceled on exchange for %s.', trade)
            trade.close_rate = None
            trade.close_profit = None
            trade.close_date = None
            trade.is_open = True
            trade.open_order_id = None
            self.rpc.send_msg({
                'type': RPCMessageType.STATUS_NOTIFICATION,
                'status': f'Unfilled sell order for {trade.pair} cancelled {reason}'
            })

            return True

        # TODO: figure out how to handle partially complete sell orders
        return False

    def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> None:
        """
        Executes a limit sell for the given trade and limit
        :param trade: Trade instance
        :param limit: limit rate for the sell order
        :param sellreason: Reason the sell was triggered
        :return: None
        """
        sell_type = 'sell'
        if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
            sell_type = 'stoploss'

        # if stoploss is on exchange and we are on dry_run mode,
        # we consider the sell price stop price
        if self.config.get('dry_run', False) and sell_type == 'stoploss' \
           and self.strategy.order_types['stoploss_on_exchange']:
            limit = trade.stop_loss

        # First cancelling stoploss on exchange ...
        if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id:
            try:
                self.exchange.cancel_order(trade.stoploss_order_id, trade.pair)
            except InvalidOrderException:
                logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}")

        # Execute sell and update trade record
        order_id = self.exchange.sell(pair=str(trade.pair),
                                      ordertype=self.strategy.order_types[sell_type],
                                      amount=trade.amount, rate=limit,
                                      time_in_force=self.strategy.order_time_in_force['sell']
                                      )['id']

        trade.open_order_id = order_id
        trade.close_rate_requested = limit
        trade.sell_reason = sell_reason.value
        Trade.session.flush()
        self.notify_sell(trade)

    def notify_sell(self, trade: Trade):
        """
        Sends rpc notification when a sell occured.
        """
        profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
        profit_trade = trade.calc_profit(rate=profit_rate)
        # Use cached ticker here - it was updated seconds ago.
        current_rate = self.get_sell_rate(trade.pair, False)
        profit_percent = trade.calc_profit_percent(profit_rate)
        gain = "profit" if profit_percent > 0 else "loss"

        msg = {
            'type': RPCMessageType.SELL_NOTIFICATION,
            'exchange': trade.exchange.capitalize(),
            'pair': trade.pair,
            'gain': gain,
            'limit': trade.close_rate_requested,
            'order_type': self.strategy.order_types['sell'],
            'amount': trade.amount,
            'open_rate': trade.open_rate,
            'current_rate': current_rate,
            'profit_amount': profit_trade,
            'profit_percent': profit_percent,
            'sell_reason': trade.sell_reason
        }

        # For regular case, when the configuration exists
        if 'stake_currency' in self.config and 'fiat_display_currency' in self.config:
            stake_currency = self.config['stake_currency']
            fiat_currency = self.config['fiat_display_currency']
            msg.update({
                'stake_currency': stake_currency,
                'fiat_currency': fiat_currency,
            })

        # Send the message
        self.rpc.send_msg(msg)
示例#5
0
class FreqtradeBot:
    """
    Freqtrade is the main class of the bot.
    This is from here the bot start its logic.
    """
    def __init__(self, config: Dict[str, Any]) -> None:
        """
        Init all variables and objects the bot needs to work
        :param config: configuration dict, you can use Configuration.get_config()
        to get the config dict.
        """

        logger.info('Starting freqtrade %s', __version__)

        # Init bot state
        self.state = State.STOPPED

        # Init objects
        self.config = config

        self._heartbeat_msg = 0

        self.heartbeat_interval = self.config.get('internals', {}).get(
            'heartbeat_interval', 60)

        self.strategy: IStrategy = StrategyResolver.load_strategy(self.config)

        # Check config consistency here since strategies can set certain options
        validate_config_consistency(config)

        self.exchange = ExchangeResolver.load_exchange(
            self.config['exchange']['name'], self.config)

        persistence.init(self.config.get('db_url', None),
                         clean_open_orders=self.config['dry_run'])

        self.wallets = Wallets(self.config, self.exchange)

        self.dataprovider = DataProvider(self.config, self.exchange)

        # Attach Dataprovider to Strategy baseclass
        IStrategy.dp = self.dataprovider
        # Attach Wallets to Strategy baseclass
        IStrategy.wallets = self.wallets

        self.pairlists = PairListManager(self.exchange, self.config)

        # Initializing Edge only if enabled
        self.edge = Edge(self.config, self.exchange, self.strategy) if \
            self.config.get('edge', {}).get('enabled', False) else None

        self.active_pair_whitelist = self._refresh_whitelist()

        # Set initial bot state from config
        initial_state = self.config.get('initial_state')
        self.state = State[
            initial_state.upper()] if initial_state else State.STOPPED

        # RPC runs in separate threads, can start handling external commands just after
        # initialization, even before Freqtradebot has a chance to start its throttling,
        # so anything in the Freqtradebot instance should be ready (initialized), including
        # the initial state of the bot.
        # Keep this at the end of this initialization method.
        self.rpc: RPCManager = RPCManager(self)
        # Protect sell-logic from forcesell and viceversa
        self._sell_lock = Lock()

    def notify_status(self, msg: str) -> None:
        """
        Public method for users of this class (worker, etc.) to send notifications
        via RPC about changes in the bot status.
        """
        self.rpc.send_msg({
            'type': RPCMessageType.STATUS_NOTIFICATION,
            'status': msg
        })

    def cleanup(self) -> None:
        """
        Cleanup pending resources on an already stopped bot
        :return: None
        """
        logger.info('Cleaning up modules ...')

        self.rpc.cleanup()
        persistence.cleanup()

    def startup(self) -> None:
        """
        Called on startup and after reloading the bot - triggers notifications and
        performs startup tasks
        """
        self.rpc.startup_messages(self.config, self.pairlists)
        if not self.edge:
            # Adjust stoploss if it was changed
            Trade.stoploss_reinitialization(self.strategy.stoploss)

    def process(self) -> None:
        """
        Queries the persistence layer for open trades and handles them,
        otherwise a new trade is created.
        :return: True if one or more trades has been created or closed, False otherwise
        """

        # Check whether markets have to be reloaded
        self.exchange._reload_markets()

        # Query trades from persistence layer
        trades = Trade.get_open_trades()

        self.active_pair_whitelist = self._refresh_whitelist(trades)

        # Refreshing candles
        self.dataprovider.refresh(
            self._create_pair_whitelist(self.active_pair_whitelist),
            self.strategy.informative_pairs())

        # Protect from collisions with forcesell.
        # Without this, freqtrade my try to recreate stoploss_on_exchange orders
        # while selling is in process, since telegram messages arrive in an different thread.
        with self._sell_lock:
            # First process current opened trades (positions)
            self.exit_positions(trades)

        # Then looking for buy opportunities
        if self.get_free_open_trades():
            self.enter_positions()

        # Check and handle any timed out open orders
        self.check_handle_timedout()
        Trade.session.flush()

        if (self.heartbeat_interval
                and (arrow.utcnow().timestamp - self._heartbeat_msg >
                     self.heartbeat_interval)):
            logger.info(f"Bot heartbeat. PID={getpid()}")
            self._heartbeat_msg = arrow.utcnow().timestamp

    def _refresh_whitelist(self, trades: List[Trade] = []) -> List[str]:
        """
        Refresh whitelist from pairlist or edge and extend it with trades.
        """
        # Refresh whitelist
        self.pairlists.refresh_pairlist()
        _whitelist = self.pairlists.whitelist

        # Calculating Edge positioning
        if self.edge:
            self.edge.calculate()
            _whitelist = self.edge.adjust(_whitelist)

        if trades:
            # Extend active-pair whitelist with pairs from open trades
            # It ensures that tickers are downloaded for open trades
            _whitelist.extend([
                trade.pair for trade in trades if trade.pair not in _whitelist
            ])
        return _whitelist

    def _create_pair_whitelist(self,
                               pairs: List[str]) -> List[Tuple[str, str]]:
        """
        Create pair-whitelist tuple with (pair, ticker_interval)
        """
        return [(pair, self.config['ticker_interval']) for pair in pairs]

    def get_free_open_trades(self):
        """
        Return the number of free open trades slots or 0 if
        max number of open trades reached
        """
        open_trades = len(Trade.get_open_trades())
        return max(0, self.config['max_open_trades'] - open_trades)

#
# BUY / enter positions / open trades logic and methods
#

    def enter_positions(self) -> int:
        """
        Tries to execute buy orders for new trades (positions)
        """
        trades_created = 0

        whitelist = copy.deepcopy(self.active_pair_whitelist)
        if not whitelist:
            logger.info("Active pair whitelist is empty.")
        else:
            # Remove pairs for currently opened trades from the whitelist
            for trade in Trade.get_open_trades():
                if trade.pair in whitelist:
                    whitelist.remove(trade.pair)
                    logger.debug('Ignoring %s in pair whitelist', trade.pair)

            if not whitelist:
                logger.info("No currency pair in active pair whitelist, "
                            "but checking to sell open trades.")
            else:
                # Create entity and execute trade for each pair from whitelist
                for pair in whitelist:
                    try:
                        trades_created += self.create_trade(pair)
                    except DependencyException as exception:
                        logger.warning('Unable to create trade for %s: %s',
                                       pair, exception)

                if not trades_created:
                    logger.debug(
                        "Found no buy signals for whitelisted currencies. "
                        "Trying again...")

        return trades_created

    def get_buy_rate(self, pair: str, tick: Dict = None) -> float:
        """
        Calculates bid target between current ask price and last price
        :return: float: Price
        """
        config_bid_strategy = self.config.get('bid_strategy', {})
        if 'use_order_book' in config_bid_strategy and\
                config_bid_strategy.get('use_order_book', False):
            logger.info('Getting price from order book')
            order_book_top = config_bid_strategy.get('order_book_top', 1)
            order_book = self.exchange.get_order_book(pair, order_book_top)
            logger.debug('order_book %s', order_book)
            # top 1 = index 0
            order_book_rate = order_book['bids'][order_book_top - 1][0]
            logger.info('...top %s order book buy rate %0.8f', order_book_top,
                        order_book_rate)
            used_rate = order_book_rate
        else:
            if not tick:
                logger.info('Using Last Ask / Last Price')
                ticker = self.exchange.fetch_ticker(pair)
            else:
                ticker = tick
            if ticker['ask'] < ticker['last']:
                ticker_rate = ticker['ask']
            else:
                balance = self.config['bid_strategy']['ask_last_balance']
                ticker_rate = ticker['ask'] + balance * (ticker['last'] -
                                                         ticker['ask'])
            used_rate = ticker_rate

        return used_rate

    def get_trade_stake_amount(self, pair) -> float:
        """
        Calculate stake amount for the trade
        :return: float: Stake amount
        :raise: DependencyException if the available stake amount is too low
        """
        stake_amount: float
        # Ensure wallets are uptodate.
        self.wallets.update()

        if self.edge:
            stake_amount = self.edge.stake_amount(
                pair, self.wallets.get_free(self.config['stake_currency']),
                self.wallets.get_total(self.config['stake_currency']),
                Trade.total_open_trades_stakes())
        else:
            stake_amount = self.config['stake_amount']
            if stake_amount == constants.UNLIMITED_STAKE_AMOUNT:
                stake_amount = self._calculate_unlimited_stake_amount()

        return self._check_available_stake_amount(stake_amount)

    def _get_available_stake_amount(self) -> float:
        """
        Return the total currently available balance in stake currency,
        respecting tradable_balance_ratio.
        Calculated as
        <open_trade stakes> + free amount ) * tradable_balance_ratio - <open_trade stakes>
        """
        val_tied_up = Trade.total_open_trades_stakes()

        # Ensure <tradable_balance_ratio>% is used from the overall balance
        # Otherwise we'd risk lowering stakes with each open trade.
        # (tied up + current free) * ratio) - tied up
        available_amount = (
            (val_tied_up + self.wallets.get_free(self.config['stake_currency'])
             ) * self.config['tradable_balance_ratio']) - val_tied_up
        return available_amount

    def _calculate_unlimited_stake_amount(self) -> float:
        """
        Calculate stake amount for "unlimited" stake amount
        :return: 0 if max number of trades reached, else stake_amount to use.
        """
        free_open_trades = self.get_free_open_trades()
        if not free_open_trades:
            return 0

        available_amount = self._get_available_stake_amount()

        return available_amount / free_open_trades

    def _check_available_stake_amount(self, stake_amount: float) -> float:
        """
        Check if stake amount can be fulfilled with the available balance
        for the stake currency
        :return: float: Stake amount
        """
        available_amount = self._get_available_stake_amount()

        if self.config['amend_last_stake_amount']:
            # Remaining amount needs to be at least stake_amount * last_stake_amount_min_ratio
            # Otherwise the remaining amount is too low to trade.
            if available_amount > (stake_amount *
                                   self.config['last_stake_amount_min_ratio']):
                stake_amount = min(stake_amount, available_amount)
            else:
                stake_amount = 0

        if available_amount < stake_amount:
            raise DependencyException(
                f"Available balance ({available_amount} {self.config['stake_currency']}) is "
                f"lower than stake amount ({stake_amount} {self.config['stake_currency']})"
            )

        return stake_amount

    def _get_min_pair_stake_amount(self, pair: str,
                                   price: float) -> Optional[float]:
        try:
            market = self.exchange.markets[pair]
        except KeyError:
            raise ValueError(f"Can't get market information for symbol {pair}")

        if 'limits' not in market:
            return None

        min_stake_amounts = []
        limits = market['limits']
        if ('cost' in limits and 'min' in limits['cost']
                and limits['cost']['min'] is not None):
            min_stake_amounts.append(limits['cost']['min'])

        if ('amount' in limits and 'min' in limits['amount']
                and limits['amount']['min'] is not None):
            min_stake_amounts.append(limits['amount']['min'] * price)

        if not min_stake_amounts:
            return None

        # reserve some percent defined in config (5% default) + stoploss
        amount_reserve_percent = 1.0 - self.config.get(
            'amount_reserve_percent', constants.DEFAULT_AMOUNT_RESERVE_PERCENT)
        if self.strategy.stoploss is not None:
            amount_reserve_percent += self.strategy.stoploss
        # it should not be more than 50%
        amount_reserve_percent = max(amount_reserve_percent, 0.5)

        # The value returned should satisfy both limits: for amount (base currency) and
        # for cost (quote, stake currency), so max() is used here.
        # See also #2575 at github.
        return max(min_stake_amounts) / amount_reserve_percent

    def create_trade(self, pair: str) -> bool:
        """
        Check the implemented trading strategy for buy signals.

        If the pair triggers the buy signal a new trade record gets created
        and the buy-order opening the trade gets issued towards the exchange.

        :return: True if a trade has been created.
        """
        logger.debug(f"create_trade for pair {pair}")

        if self.strategy.is_pair_locked(pair):
            logger.info(f"Pair {pair} is currently locked.")
            return False

        # running get_signal on historical data fetched
        (buy, sell) = self.strategy.get_signal(
            pair, self.strategy.ticker_interval,
            self.dataprovider.ohlcv(pair, self.strategy.ticker_interval))

        if buy and not sell:
            if not self.get_free_open_trades():
                logger.debug(
                    "Can't open a new trade: max number of trades is reached.")
                return False

            stake_amount = self.get_trade_stake_amount(pair)
            if not stake_amount:
                logger.debug(
                    "Stake amount is 0, ignoring possible trade for {pair}.")
                return False

            logger.info(
                f"Buy signal found: about create a new trade with stake_amount: "
                f"{stake_amount} ...")

            bid_check_dom = self.config.get('bid_strategy',
                                            {}).get('check_depth_of_market',
                                                    {})
            if ((bid_check_dom.get('enabled', False))
                    and (bid_check_dom.get('bids_to_ask_delta', 0) > 0)):
                if self._check_depth_of_market_buy(pair, bid_check_dom):
                    return self.execute_buy(pair, stake_amount)
                else:
                    return False

            return self.execute_buy(pair, stake_amount)
        else:
            return False

    def _check_depth_of_market_buy(self, pair: str, conf: Dict) -> bool:
        """
        Checks depth of market before executing a buy
        """
        conf_bids_to_ask_delta = conf.get('bids_to_ask_delta', 0)
        logger.info('checking depth of market for %s', pair)
        order_book = self.exchange.get_order_book(pair, 1000)
        order_book_data_frame = order_book_to_dataframe(
            order_book['bids'], order_book['asks'])
        order_book_bids = order_book_data_frame['b_size'].sum()
        order_book_asks = order_book_data_frame['a_size'].sum()
        bids_ask_delta = order_book_bids / order_book_asks
        logger.info('bids: %s, asks: %s, delta: %s', order_book_bids,
                    order_book_asks, bids_ask_delta)
        if bids_ask_delta >= conf_bids_to_ask_delta:
            return True
        return False

    def execute_buy(self,
                    pair: str,
                    stake_amount: float,
                    price: Optional[float] = None) -> bool:
        """
        Executes a limit buy for the given pair
        :param pair: pair for which we want to create a LIMIT_BUY
        :return: None
        """
        time_in_force = self.strategy.order_time_in_force['buy']

        if price:
            buy_limit_requested = price
        else:
            # Calculate price
            buy_limit_requested = self.get_buy_rate(pair)

        min_stake_amount = self._get_min_pair_stake_amount(
            pair, buy_limit_requested)
        if min_stake_amount is not None and min_stake_amount > stake_amount:
            logger.warning(
                f"Can't open a new trade for {pair}: stake amount "
                f"is too small ({stake_amount} < {min_stake_amount})")
            return False

        amount = stake_amount / buy_limit_requested
        order_type = self.strategy.order_types['buy']
        order = self.exchange.buy(pair=pair,
                                  ordertype=order_type,
                                  amount=amount,
                                  rate=buy_limit_requested,
                                  time_in_force=time_in_force)
        order_id = order['id']
        order_status = order.get('status', None)

        # we assume the order is executed at the price requested
        buy_limit_filled_price = buy_limit_requested

        if order_status == 'expired' or order_status == 'rejected':
            order_tif = self.strategy.order_time_in_force['buy']

            # return false if the order is not filled
            if float(order['filled']) == 0:
                logger.warning(
                    'Buy %s order with time in force %s for %s is %s by %s.'
                    ' zero amount is fulfilled.', order_tif, order_type, pair,
                    order_status, self.exchange.name)
                return False
            else:
                # the order is partially fulfilled
                # in case of IOC orders we can check immediately
                # if the order is fulfilled fully or partially
                logger.warning(
                    'Buy %s order with time in force %s for %s is %s by %s.'
                    ' %s amount fulfilled out of %s (%s remaining which is canceled).',
                    order_tif, order_type, pair, order_status,
                    self.exchange.name, order['filled'], order['amount'],
                    order['remaining'])
                stake_amount = order['cost']
                amount = order['amount']
                buy_limit_filled_price = order['price']
                order_id = None

        # in case of FOK the order may be filled immediately and fully
        elif order_status == 'closed':
            stake_amount = order['cost']
            amount = order['amount']
            buy_limit_filled_price = order['price']

        # Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
        fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
        trade = Trade(pair=pair,
                      stake_amount=stake_amount,
                      amount=amount,
                      fee_open=fee,
                      fee_close=fee,
                      open_rate=buy_limit_filled_price,
                      open_rate_requested=buy_limit_requested,
                      open_date=datetime.utcnow(),
                      exchange=self.exchange.id,
                      open_order_id=order_id,
                      strategy=self.strategy.get_strategy_name(),
                      ticker_interval=timeframe_to_minutes(
                          self.config['ticker_interval']))

        self._notify_buy(trade, order_type)

        # Update fees if order is closed
        if order_status == 'closed':
            self.update_trade_state(trade, order)

        Trade.session.add(trade)
        Trade.session.flush()

        # Updating wallets
        self.wallets.update()

        return True

    def _notify_buy(self, trade: Trade, order_type: str):
        """
        Sends rpc notification when a buy occured.
        """
        msg = {
            'type': RPCMessageType.BUY_NOTIFICATION,
            'exchange': self.exchange.name.capitalize(),
            'pair': trade.pair,
            'limit': trade.open_rate,
            'order_type': order_type,
            'stake_amount': trade.stake_amount,
            'stake_currency': self.config['stake_currency'],
            'fiat_currency': self.config.get('fiat_display_currency', None),
        }

        # Send the message
        self.rpc.send_msg(msg)

#
# SELL / exit positions / close trades logic and methods
#

    def exit_positions(self, trades: List[Any]) -> int:
        """
        Tries to execute sell orders for open trades (positions)
        """
        trades_closed = 0
        for trade in trades:
            try:
                self.update_trade_state(trade)

                if (self.strategy.order_types.get('stoploss_on_exchange')
                        and self.handle_stoploss_on_exchange(trade)):
                    trades_closed += 1
                    continue
                # Check if we can sell our current pair
                if trade.open_order_id is None and self.handle_trade(trade):
                    trades_closed += 1

            except DependencyException as exception:
                logger.warning('Unable to sell trade: %s', exception)

        # Updating wallets if any trade occured
        if trades_closed:
            self.wallets.update()

        return trades_closed

    def get_sell_rate(self, pair: str, refresh: bool) -> float:
        """
        Get sell rate - either using get-ticker bid or first bid based on orderbook
        The orderbook portion is only used for rpc messaging, which would otherwise fail
        for BitMex (has no bid/ask in fetch_ticker)
        or remain static in any other case since it's not updating.
        :return: Bid rate
        """
        config_ask_strategy = self.config.get('ask_strategy', {})
        if config_ask_strategy.get('use_order_book', False):
            logger.debug('Using order book to get sell rate')

            order_book = self.exchange.get_order_book(pair, 1)
            rate = order_book['bids'][0][0]

        else:
            rate = self.exchange.fetch_ticker(pair, refresh)['bid']
        return rate

    def handle_trade(self, trade: Trade) -> bool:
        """
        Sells the current pair if the threshold is reached and updates the trade record.
        :return: True if trade has been sold, False otherwise
        """
        if not trade.is_open:
            raise DependencyException(
                f'Attempt to handle closed trade: {trade}')

        logger.debug('Handling %s ...', trade)

        (buy, sell) = (False, False)

        config_ask_strategy = self.config.get('ask_strategy', {})

        if (config_ask_strategy.get('use_sell_signal', True)
                or config_ask_strategy.get('ignore_roi_if_buy_signal')):
            (buy, sell) = self.strategy.get_signal(
                trade.pair, self.strategy.ticker_interval,
                self.dataprovider.ohlcv(trade.pair,
                                        self.strategy.ticker_interval))

        if config_ask_strategy.get('use_order_book', False):
            logger.info('Using order book for selling...')
            # logger.debug('Order book %s',orderBook)
            order_book_min = config_ask_strategy.get('order_book_min', 1)
            order_book_max = config_ask_strategy.get('order_book_max', 1)

            order_book = self.exchange.get_order_book(trade.pair,
                                                      order_book_max)

            for i in range(order_book_min, order_book_max + 1):
                order_book_rate = order_book['asks'][i - 1][0]
                logger.info('  order book asks top %s: %0.8f', i,
                            order_book_rate)
                sell_rate = order_book_rate

                if self._check_and_execute_sell(trade, sell_rate, buy, sell):
                    return True

        else:
            logger.debug('checking sell')
            sell_rate = self.get_sell_rate(trade.pair, True)
            if self._check_and_execute_sell(trade, sell_rate, buy, sell):
                return True

        logger.debug('Found no sell signal for %s.', trade)
        return False

    def create_stoploss_order(self, trade: Trade, stop_price: float,
                              rate: float) -> bool:
        """
        Abstracts creating stoploss orders from the logic.
        Handles errors and updates the trade database object.
        Force-sells the pair (using EmergencySell reason) in case of Problems creating the order.
        :return: True if the order succeeded, and False in case of problems.
        """
        # Limit price threshold: As limit price should always be below stop-price
        LIMIT_PRICE_PCT = self.strategy.order_types.get(
            'stoploss_on_exchange_limit_ratio', 0.99)

        try:
            stoploss_order = self.exchange.stoploss_limit(
                pair=trade.pair,
                amount=trade.amount,
                stop_price=stop_price,
                rate=rate * LIMIT_PRICE_PCT)
            trade.stoploss_order_id = str(stoploss_order['id'])
            return True
        except InvalidOrderException as e:
            trade.stoploss_order_id = None
            logger.error(f'Unable to place a stoploss order on exchange. {e}')
            logger.warning('Selling the trade forcefully')
            self.execute_sell(trade,
                              trade.stop_loss,
                              sell_reason=SellType.EMERGENCY_SELL)

        except DependencyException:
            trade.stoploss_order_id = None
            logger.exception('Unable to place a stoploss order on exchange.')
        return False

    def handle_stoploss_on_exchange(self, trade: Trade) -> bool:
        """
        Check if trade is fulfilled in which case the stoploss
        on exchange should be added immediately if stoploss on exchange
        is enabled.
        """

        logger.debug('Handling stoploss on exchange %s ...', trade)

        stoploss_order = None

        try:
            # First we check if there is already a stoploss on exchange
            stoploss_order = self.exchange.get_order(trade.stoploss_order_id, trade.pair) \
                if trade.stoploss_order_id else None
        except InvalidOrderException as exception:
            logger.warning('Unable to fetch stoploss order: %s', exception)

        # If buy order is fulfilled but there is no stoploss, we add a stoploss on exchange
        if (not trade.open_order_id and not stoploss_order):

            stoploss = self.edge.stoploss(
                pair=trade.pair) if self.edge else self.strategy.stoploss

            stop_price = trade.open_rate * (1 + stoploss)

            if self.create_stoploss_order(trade=trade,
                                          stop_price=stop_price,
                                          rate=stop_price):
                trade.stoploss_last_update = datetime.now()
                return False

        # If stoploss order is canceled for some reason we add it
        if stoploss_order and stoploss_order['status'] == 'canceled':
            if self.create_stoploss_order(trade=trade,
                                          stop_price=trade.stop_loss,
                                          rate=trade.stop_loss):
                return False
            else:
                trade.stoploss_order_id = None
                logger.warning(
                    'Stoploss order was cancelled, but unable to recreate one.'
                )

        # We check if stoploss order is fulfilled
        if stoploss_order and stoploss_order['status'] == 'closed':
            trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
            trade.update(stoploss_order)
            # Lock pair for one candle to prevent immediate rebuys
            self.strategy.lock_pair(
                trade.pair,
                timeframe_to_next_date(self.config['ticker_interval']))
            self._notify_sell(trade, "stoploss")
            return True

        # Finally we check if stoploss on exchange should be moved up because of trailing.
        if stoploss_order and self.config.get('trailing_stop', False):
            # if trailing stoploss is enabled we check if stoploss value has changed
            # in which case we cancel stoploss order and put another one with new
            # value immediately
            self.handle_trailing_stoploss_on_exchange(trade, stoploss_order)

        return False

    def handle_trailing_stoploss_on_exchange(self, trade: Trade, order):
        """
        Check to see if stoploss on exchange should be updated
        in case of trailing stoploss on exchange
        :param Trade: Corresponding Trade
        :param order: Current on exchange stoploss order
        :return: None
        """

        if trade.stop_loss > float(order['info']['stopPrice']):
            # we check if the update is neccesary
            update_beat = self.strategy.order_types.get(
                'stoploss_on_exchange_interval', 60)
            if (datetime.utcnow() -
                    trade.stoploss_last_update).total_seconds() >= update_beat:
                # cancelling the current stoploss on exchange first
                logger.info(
                    'Trailing stoploss: cancelling current stoploss on exchange (id:{%s})'
                    'in order to add another one ...', order['id'])
                try:
                    self.exchange.cancel_order(order['id'], trade.pair)
                except InvalidOrderException:
                    logger.exception(
                        f"Could not cancel stoploss order {order['id']} "
                        f"for pair {trade.pair}")

                # Create new stoploss order
                if self.create_stoploss_order(trade=trade,
                                              stop_price=trade.stop_loss,
                                              rate=trade.stop_loss):
                    return False
                else:
                    logger.warning(f"Could not create trailing stoploss order "
                                   f"for pair {trade.pair}.")

    def _check_and_execute_sell(self, trade: Trade, sell_rate: float,
                                buy: bool, sell: bool) -> bool:
        """
        Check and execute sell
        """
        should_sell = self.strategy.should_sell(
            trade,
            sell_rate,
            datetime.utcnow(),
            buy,
            sell,
            force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0)

        if should_sell.sell_flag:
            self.execute_sell(trade, sell_rate, should_sell.sell_type)
            logger.info('executed sell, reason: %s', should_sell.sell_type)
            return True
        return False

    def _check_timed_out(self, side: str, order: dict) -> bool:
        """
        Check if timeout is active, and if the order is still open and timed out
        """
        timeout = self.config.get('unfilledtimeout', {}).get(side)
        ordertime = arrow.get(order['datetime']).datetime
        if timeout is not None:
            timeout_threshold = arrow.utcnow().shift(minutes=-timeout).datetime

            return (order['status'] == 'open' and order['side'] == side
                    and ordertime < timeout_threshold)
        return False

    def check_handle_timedout(self) -> None:
        """
        Check if any orders are timed out and cancel if neccessary
        :param timeoutvalue: Number of minutes until order is considered timed out
        :return: None
        """

        for trade in Trade.get_open_order_trades():
            try:
                if not trade.open_order_id:
                    continue
                order = self.exchange.get_order(trade.open_order_id,
                                                trade.pair)
            except (RequestException, DependencyException,
                    InvalidOrderException):
                logger.info('Cannot query order for %s due to %s', trade,
                            traceback.format_exc())
                continue

            # Check if trade is still actually open
            if float(order.get('remaining', 0.0)) == 0.0:
                self.wallets.update()
                continue

            if ((order['side'] == 'buy' and order['status'] == 'canceled')
                    or (self._check_timed_out('buy', order))):

                self.handle_timedout_limit_buy(trade, order)
                self.wallets.update()

            elif ((order['side'] == 'sell' and order['status'] == 'canceled')
                  or (self._check_timed_out('sell', order))):
                self.handle_timedout_limit_sell(trade, order)
                self.wallets.update()

    def handle_buy_order_full_cancel(self, trade: Trade, reason: str) -> None:
        """Close trade in database and send message"""
        Trade.session.delete(trade)
        Trade.session.flush()
        logger.info('Buy order %s for %s.', reason, trade)
        self.rpc.send_msg({
            'type':
            RPCMessageType.STATUS_NOTIFICATION,
            'status':
            f'Unfilled buy order for {trade.pair} {reason}'
        })

    def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
        """
        Buy timeout - cancel order
        :return: True if order was fully cancelled
        """
        reason = "cancelled due to timeout"
        if order['status'] != 'canceled':
            corder = self.exchange.cancel_order(trade.open_order_id,
                                                trade.pair)
        else:
            # Order was cancelled already, so we can reuse the existing dict
            corder = order
            reason = "canceled on Exchange"

        if corder.get('remaining', order['remaining']) == order['amount']:
            # if trade is not partially completed, just delete the trade
            self.handle_buy_order_full_cancel(trade, reason)
            return True

        # if trade is partially complete, edit the stake details for the trade
        # and close the order
        # cancel_order may not contain the full order dict, so we need to fallback
        # to the order dict aquired before cancelling.
        # we need to fall back to the values from order if corder does not contain these keys.
        trade.amount = order['amount'] - corder.get('remaining',
                                                    order['remaining'])
        trade.stake_amount = trade.amount * trade.open_rate
        # verify if fees were taken from amount to avoid problems during selling
        try:
            new_amount = self.get_real_amount(
                trade, corder if 'fee' in corder else order, trade.amount)
            if not isclose(order['amount'],
                           new_amount,
                           abs_tol=constants.MATH_CLOSE_PREC):
                trade.amount = new_amount
                # Fee was applied, so set to 0
                trade.fee_open = 0
                trade.recalc_open_trade_price()
        except DependencyException as e:
            logger.warning("Could not update trade amount: %s", e)

        trade.open_order_id = None
        logger.info('Partial buy order timeout for %s.', trade)
        self.rpc.send_msg({
            'type':
            RPCMessageType.STATUS_NOTIFICATION,
            'status':
            f'Remaining buy order for {trade.pair} cancelled due to timeout'
        })
        return False

    def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool:
        """
        Sell timeout - cancel order and update trade
        :return: True if order was fully cancelled
        """
        if order['remaining'] == order['amount']:
            # if trade is not partially completed, just cancel the trade
            if order["status"] != "canceled":
                reason = "due to timeout"
                self.exchange.cancel_order(trade.open_order_id, trade.pair)
                logger.info('Sell order timeout for %s.', trade)
            else:
                reason = "on exchange"
                logger.info('Sell order canceled on exchange for %s.', trade)
            trade.close_rate = None
            trade.close_profit = None
            trade.close_date = None
            trade.is_open = True
            trade.open_order_id = None
            self.rpc.send_msg({
                'type':
                RPCMessageType.STATUS_NOTIFICATION,
                'status':
                f'Unfilled sell order for {trade.pair} cancelled {reason}'
            })

            return True

        # TODO: figure out how to handle partially complete sell orders
        return False

    def _safe_sell_amount(self, pair: str, amount: float) -> float:
        """
        Get sellable amount.
        Should be trade.amount - but will fall back to the available amount if necessary.
        This should cover cases where get_real_amount() was not able to update the amount
        for whatever reason.
        :param pair: Pair we're trying to sell
        :param amount: amount we expect to be available
        :return: amount to sell
        :raise: DependencyException: if available balance is not within 2% of the available amount.
        """
        # Update wallets to ensure amounts tied up in a stoploss is now free!
        self.wallets.update()

        wallet_amount = self.wallets.get_free(pair.split('/')[0])
        logger.debug(
            f"{pair} - Wallet: {wallet_amount} - Trade-amount: {amount}")
        if wallet_amount >= amount:
            return amount
        elif wallet_amount > amount * 0.98:
            logger.info(f"{pair} - Falling back to wallet-amount.")
            return wallet_amount
        else:
            raise DependencyException(
                f"Not enough amount to sell. Trade-amount: {amount}, Wallet: {wallet_amount}"
            )

    def execute_sell(self, trade: Trade, limit: float,
                     sell_reason: SellType) -> None:
        """
        Executes a limit sell for the given trade and limit
        :param trade: Trade instance
        :param limit: limit rate for the sell order
        :param sellreason: Reason the sell was triggered
        :return: None
        """
        sell_type = 'sell'
        if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
            sell_type = 'stoploss'

        # if stoploss is on exchange and we are on dry_run mode,
        # we consider the sell price stop price
        if self.config['dry_run'] and sell_type == 'stoploss' \
           and self.strategy.order_types['stoploss_on_exchange']:
            limit = trade.stop_loss

        # First cancelling stoploss on exchange ...
        if self.strategy.order_types.get(
                'stoploss_on_exchange') and trade.stoploss_order_id:
            try:
                self.exchange.cancel_order(trade.stoploss_order_id, trade.pair)
            except InvalidOrderException:
                logger.exception(
                    f"Could not cancel stoploss order {trade.stoploss_order_id}"
                )

        order_type = self.strategy.order_types[sell_type]
        if sell_reason == SellType.EMERGENCY_SELL:
            # Emergencysells (default to market!)
            order_type = self.strategy.order_types.get("emergencysell",
                                                       "market")

        amount = self._safe_sell_amount(trade.pair, trade.amount)

        # Execute sell and update trade record
        order = self.exchange.sell(
            pair=str(trade.pair),
            ordertype=order_type,
            amount=amount,
            rate=limit,
            time_in_force=self.strategy.order_time_in_force['sell'])

        trade.open_order_id = order['id']
        trade.close_rate_requested = limit
        trade.sell_reason = sell_reason.value
        # In case of market sell orders the order can be closed immediately
        if order.get('status', 'unknown') == 'closed':
            trade.update(order)
        Trade.session.flush()

        # Lock pair for one candle to prevent immediate rebuys
        self.strategy.lock_pair(
            trade.pair, timeframe_to_next_date(self.config['ticker_interval']))

        self._notify_sell(trade, order_type)

    def _notify_sell(self, trade: Trade, order_type: str):
        """
        Sends rpc notification when a sell occured.
        """
        profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
        profit_trade = trade.calc_profit(rate=profit_rate)
        # Use cached ticker here - it was updated seconds ago.
        current_rate = self.get_sell_rate(trade.pair, False)
        profit_percent = trade.calc_profit_ratio(profit_rate)
        gain = "profit" if profit_percent > 0 else "loss"

        msg = {
            'type': RPCMessageType.SELL_NOTIFICATION,
            'exchange': trade.exchange.capitalize(),
            'pair': trade.pair,
            'gain': gain,
            'limit': trade.close_rate_requested,
            'order_type': order_type,
            'amount': trade.amount,
            'open_rate': trade.open_rate,
            'current_rate': current_rate,
            'profit_amount': profit_trade,
            'profit_percent': profit_percent,
            'sell_reason': trade.sell_reason,
            'open_date': trade.open_date,
            'close_date': trade.close_date or datetime.utcnow(),
            'stake_currency': self.config['stake_currency'],
        }

        if 'fiat_display_currency' in self.config:
            msg.update({
                'fiat_currency': self.config['fiat_display_currency'],
            })

        # Send the message
        self.rpc.send_msg(msg)

#
# Common update trade state methods
#

    def update_trade_state(self, trade, action_order: dict = None):
        """
        Checks trades with open orders and updates the amount if necessary
        """
        # Get order details for actual price per unit
        if trade.open_order_id:
            # Update trade with order values
            logger.info('Found open order for %s', trade)
            try:
                order = action_order or self.exchange.get_order(
                    trade.open_order_id, trade.pair)
            except InvalidOrderException as exception:
                logger.warning('Unable to fetch order %s: %s',
                               trade.open_order_id, exception)
                return
            # Try update amount (binance-fix)
            try:
                new_amount = self.get_real_amount(trade, order)
                if not isclose(order['amount'],
                               new_amount,
                               abs_tol=constants.MATH_CLOSE_PREC):
                    order['amount'] = new_amount
                    # Fee was applied, so set to 0
                    trade.fee_open = 0
                    trade.recalc_open_trade_price()

            except DependencyException as exception:
                logger.warning("Could not update trade amount: %s", exception)

            trade.update(order)

            # Updating wallets when order is closed
            if not trade.is_open:
                self.wallets.update()

    def get_real_amount(self,
                        trade: Trade,
                        order: Dict,
                        order_amount: float = None) -> float:
        """
        Get real amount for the trade
        Necessary for exchanges which charge fees in base currency (e.g. binance)
        """
        if order_amount is None:
            order_amount = order['amount']
        # Only run for closed orders
        if trade.fee_open == 0 or order['status'] == 'open':
            return order_amount

        # use fee from order-dict if possible
        if ('fee' in order and order['fee'] is not None
                and (order['fee'].keys() >= {'currency', 'cost'})):
            if (order['fee']['currency'] is not None
                    and order['fee']['cost'] is not None
                    and trade.pair.startswith(order['fee']['currency'])):
                new_amount = order_amount - order['fee']['cost']
                logger.info(
                    "Applying fee on amount for %s (from %s to %s) from Order",
                    trade, order['amount'], new_amount)
                return new_amount

        # Fallback to Trades
        trades = self.exchange.get_trades_for_order(trade.open_order_id,
                                                    trade.pair,
                                                    trade.open_date)

        if len(trades) == 0:
            logger.info(
                "Applying fee on amount for %s failed: myTrade-Dict empty found",
                trade)
            return order_amount
        amount = 0
        fee_abs = 0
        for exectrade in trades:
            amount += exectrade['amount']
            if ("fee" in exectrade and exectrade['fee'] is not None
                    and (exectrade['fee'].keys() >= {'currency', 'cost'})):
                # only applies if fee is in quote currency!
                if (exectrade['fee']['currency'] is not None
                        and exectrade['fee']['cost'] is not None and
                        trade.pair.startswith(exectrade['fee']['currency'])):
                    fee_abs += exectrade['fee']['cost']

        if not isclose(amount, order_amount,
                       abs_tol=constants.MATH_CLOSE_PREC):
            logger.warning(
                f"Amount {amount} does not match amount {trade.amount}")
            raise DependencyException("Half bought? Amounts don't match")
        real_amount = amount - fee_abs
        if fee_abs != 0:
            logger.info(f"Applying fee on amount for {trade} "
                        f"(from {order_amount} to {real_amount}) from Trades")
        return real_amount