class Backtesting: """ Backtesting class, this class contains all the logic to run a backtest To run a backtest: backtesting = Backtesting(config) backtesting.start() """ def __init__(self, config: Dict[str, Any]) -> None: LoggingMixin.show_output = False self.config = config self.results: Dict[str, Any] = {} config['dry_run'] = True self.run_ids: Dict[str, str] = {} self.strategylist: List[IStrategy] = [] self.all_results: Dict[str, Dict] = {} self.exchange = ExchangeResolver.load_exchange( self.config['exchange']['name'], self.config) self.dataprovider = DataProvider(self.config, self.exchange) if self.config.get('strategy_list', None): for strat in list(self.config['strategy_list']): stratconf = deepcopy(self.config) stratconf['strategy'] = strat self.strategylist.append( StrategyResolver.load_strategy(stratconf)) validate_config_consistency(stratconf) else: # No strategy list specified, only one strategy self.strategylist.append( StrategyResolver.load_strategy(self.config)) validate_config_consistency(self.config) if "timeframe" not in self.config: raise OperationalException( "Timeframe (ticker interval) needs to be set in either " "configuration or as cli argument `--timeframe 5m`") self.timeframe = str(self.config.get('timeframe')) self.timeframe_min = timeframe_to_minutes(self.timeframe) self.init_backtest_detail() self.pairlists = PairListManager(self.exchange, self.config) if 'VolumePairList' in self.pairlists.name_list: raise OperationalException( "VolumePairList not allowed for backtesting. " "Please use StaticPairlist instead.") if 'PerformanceFilter' in self.pairlists.name_list: raise OperationalException( "PerformanceFilter not allowed for backtesting.") if len(self.strategylist ) > 1 and 'PrecisionFilter' in self.pairlists.name_list: raise OperationalException( "PrecisionFilter not allowed for backtesting multiple strategies." ) self.dataprovider.add_pairlisthandler(self.pairlists) self.pairlists.refresh_pairlist() if len(self.pairlists.whitelist) == 0: raise OperationalException("No pair in whitelist.") if config.get('fee', None) is not None: self.fee = config['fee'] else: self.fee = self.exchange.get_fee( symbol=self.pairlists.whitelist[0]) self.timerange = TimeRange.parse_timerange(None if self.config.get( 'timerange') is None else str(self.config.get('timerange'))) # Get maximum required startup period self.required_startup = max( [strat.startup_candle_count for strat in self.strategylist]) # Add maximum startup candle count to configuration for informative pairs support self.config['startup_candle_count'] = self.required_startup self.exchange.validate_required_startup_candles( self.required_startup, self.timeframe) self.init_backtest() def __del__(self): self.cleanup() def cleanup(self): LoggingMixin.show_output = True PairLocks.use_db = True Trade.use_db = True def init_backtest_detail(self): # Load detail timeframe if specified self.timeframe_detail = str(self.config.get('timeframe_detail', '')) if self.timeframe_detail: self.timeframe_detail_min = timeframe_to_minutes( self.timeframe_detail) if self.timeframe_min <= self.timeframe_detail_min: raise OperationalException( "Detail timeframe must be smaller than strategy timeframe." ) else: self.timeframe_detail_min = 0 self.detail_data: Dict[str, DataFrame] = {} def init_backtest(self): self.prepare_backtest(False) self.wallets = Wallets(self.config, self.exchange, log=False) self.progress = BTProgress() self.abort = False def _set_strategy(self, strategy: IStrategy): """ Load strategy into backtesting """ self.strategy: IStrategy = strategy strategy.dp = self.dataprovider # Attach Wallets to Strategy baseclass strategy.wallets = self.wallets # Set stoploss_on_exchange to false for backtesting, # since a "perfect" stoploss-sell is assumed anyway # And the regular "stoploss" function would not apply to that case self.strategy.order_types['stoploss_on_exchange'] = False def _load_protections(self, strategy: IStrategy): if self.config.get('enable_protections', False): conf = self.config if hasattr(strategy, 'protections'): conf = deepcopy(conf) conf['protections'] = strategy.protections self.protections = ProtectionManager(self.config, strategy.protections) def load_bt_data(self) -> Tuple[Dict[str, DataFrame], TimeRange]: """ Loads backtest data and returns the data combined with the timerange as tuple. """ self.progress.init_step(BacktestState.DATALOAD, 1) data = history.load_data( datadir=self.config['datadir'], pairs=self.pairlists.whitelist, timeframe=self.timeframe, timerange=self.timerange, startup_candles=self.required_startup, fail_without_data=True, data_format=self.config.get('dataformat_ohlcv', 'json'), ) min_date, max_date = history.get_timerange(data) logger.info( f'Loading data from {min_date.strftime(DATETIME_PRINT_FORMAT)} ' f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} ' f'({(max_date - min_date).days} days).') # Adjust startts forward if not enough data is available self.timerange.adjust_start_if_necessary( timeframe_to_seconds(self.timeframe), self.required_startup, min_date) self.progress.set_new_value(1) return data, self.timerange def load_bt_data_detail(self) -> None: """ Loads backtest detail data (smaller timeframe) if necessary. """ if self.timeframe_detail: self.detail_data = history.load_data( datadir=self.config['datadir'], pairs=self.pairlists.whitelist, timeframe=self.timeframe_detail, timerange=self.timerange, startup_candles=0, fail_without_data=True, data_format=self.config.get('dataformat_ohlcv', 'json'), ) else: self.detail_data = {} def prepare_backtest(self, enable_protections): """ Backtesting setup method - called once for every call to "backtest()". """ PairLocks.use_db = False PairLocks.timeframe = self.config['timeframe'] Trade.use_db = False PairLocks.reset_locks() Trade.reset_trades() self.rejected_trades = 0 self.dataprovider.clear_cache() if enable_protections: self._load_protections(self.strategy) def check_abort(self): """ Check if abort was requested, raise DependencyException if that's the case Only applies to Interactive backtest mode (webserver mode) """ if self.abort: self.abort = False raise DependencyException("Stop requested") def _get_ohlcv_as_lists( self, processed: Dict[str, DataFrame]) -> Dict[str, Tuple]: """ Helper function to convert a processed dataframes into lists for performance reasons. Used by backtest() - so keep this optimized for performance. :param processed: a processed dictionary with format {pair, data}, which gets cleared to optimize memory usage! """ # Every change to this headers list must evaluate further usages of the resulting tuple # and eventually change the constants for indexes at the top headers = [ 'date', 'buy', 'open', 'close', 'sell', 'low', 'high', 'buy_tag', 'exit_tag' ] data: Dict = {} self.progress.init_step(BacktestState.CONVERT, len(processed)) # Create dict with data for pair in processed.keys(): pair_data = processed[pair] self.check_abort() self.progress.increment() if not pair_data.empty: pair_data.loc[:, 'buy'] = 0 # cleanup if buy_signal is exist pair_data.loc[:, 'sell'] = 0 # cleanup if sell_signal is exist pair_data.loc[:, 'buy_tag'] = None # cleanup if buy_tag is exist pair_data.loc[:, 'exit_tag'] = None # cleanup if exit_tag is exist df_analyzed = self.strategy.advise_sell( self.strategy.advise_buy(pair_data, {'pair': pair}), { 'pair': pair }).copy() # Trim startup period from analyzed dataframe df_analyzed = processed[pair] = pair_data = trim_dataframe( df_analyzed, self.timerange, startup_candles=self.required_startup) # To avoid using data from future, we use buy/sell signals shifted # from the previous candle df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1) df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1) df_analyzed.loc[:, 'buy_tag'] = df_analyzed.loc[:, 'buy_tag'].shift(1) df_analyzed.loc[:, 'exit_tag'] = df_analyzed.loc[:, 'exit_tag'].shift(1) # Update dataprovider cache self.dataprovider._set_cached_df(pair, self.timeframe, df_analyzed) df_analyzed = df_analyzed.drop(df_analyzed.head(1).index) # Convert from Pandas to list for performance reasons # (Looping Pandas is slow.) data[pair] = df_analyzed[headers].values.tolist() return data def _get_close_rate(self, sell_row: Tuple, trade: LocalTrade, sell: SellCheckTuple, trade_dur: int) -> float: """ Get close rate for backtesting result """ # Special handling if high or low hit STOP_LOSS or ROI if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS): if trade.stop_loss > sell_row[HIGH_IDX]: # our stoploss was already higher than candle high, # possibly due to a cancelled trade exit. # sell at open price. return sell_row[OPEN_IDX] # Special case: trailing triggers within same candle as trade opened. Assume most # pessimistic price movement, which is moving just enough to arm stoploss and # immediately going down to stop price. if sell.sell_type == SellType.TRAILING_STOP_LOSS and trade_dur == 0: if (not self.strategy.use_custom_stoploss and self.strategy.trailing_stop and self.strategy.trailing_only_offset_is_reached and self.strategy.trailing_stop_positive_offset is not None and self.strategy.trailing_stop_positive): # Worst case: price reaches stop_positive_offset and dives down. stop_rate = ( sell_row[OPEN_IDX] * (1 + abs(self.strategy.trailing_stop_positive_offset) - abs(self.strategy.trailing_stop_positive))) else: # Worst case: price ticks tiny bit above open and dives down. stop_rate = sell_row[OPEN_IDX] * (1 - abs(trade.stop_loss_pct)) assert stop_rate < sell_row[HIGH_IDX] # Limit lower-end to candle low to avoid sells below the low. # This still remains "worst case" - but "worst realistic case". return max(sell_row[LOW_IDX], stop_rate) # Set close_rate to stoploss return trade.stop_loss elif sell.sell_type == (SellType.ROI): roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur) if roi is not None and roi_entry is not None: if roi == -1 and roi_entry % self.timeframe_min == 0: # When forceselling with ROI=-1, the roi time will always be equal to trade_dur. # If that entry is a multiple of the timeframe (so on candle open) # - we'll use open instead of close return sell_row[OPEN_IDX] # - (Expected abs profit + open_rate + open_fee) / (fee_close -1) close_rate = -(trade.open_rate * roi + trade.open_rate * (1 + trade.fee_open)) / (trade.fee_close - 1) if (trade_dur > 0 and trade_dur == roi_entry and roi_entry % self.timeframe_min == 0 and sell_row[OPEN_IDX] > close_rate): # new ROI entry came into effect. # use Open rate if open_rate > calculated sell rate return sell_row[OPEN_IDX] return close_rate else: # This should not be reached... return sell_row[OPEN_IDX] else: return sell_row[OPEN_IDX] def _get_adjust_trade_entry_for_candle(self, trade: LocalTrade, row: Tuple) -> LocalTrade: current_profit = trade.calc_profit_ratio(row[OPEN_IDX]) min_stake = self.exchange.get_min_pair_stake_amount( trade.pair, row[OPEN_IDX], -0.1) max_stake = self.wallets.get_available_stake_amount() stake_amount = strategy_safe_wrapper( self.strategy.adjust_trade_position, default_retval=None)(trade=trade, current_time=row[DATE_IDX].to_pydatetime(), current_rate=row[OPEN_IDX], current_profit=current_profit, min_stake=min_stake, max_stake=max_stake) # Check if we should increase our position if stake_amount is not None and stake_amount > 0.0: pos_trade = self._enter_trade(trade.pair, row, stake_amount, trade) if pos_trade is not None: return pos_trade return trade def _get_sell_trade_entry_for_candle( self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]: # Check if we need to adjust our current positions if self.strategy.position_adjustment_enable: trade = self._get_adjust_trade_entry_for_candle(trade, sell_row) sell_candle_time = sell_row[DATE_IDX].to_pydatetime() sell = self.strategy.should_sell( trade, sell_row[OPEN_IDX], # type: ignore sell_candle_time, sell_row[BUY_IDX], sell_row[SELL_IDX], low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX]) if sell.sell_flag: trade.close_date = sell_candle_time trade_dur = int( (trade.close_date_utc - trade.open_date_utc).total_seconds() // 60) closerate = self._get_close_rate(sell_row, trade, sell, trade_dur) # call the custom exit price,with default value as previous closerate current_profit = trade.calc_profit_ratio(closerate) if sell.sell_type in (SellType.SELL_SIGNAL, SellType.CUSTOM_SELL): # Custom exit pricing only for sell-signals closerate = strategy_safe_wrapper( self.strategy.custom_exit_price, default_retval=closerate)(pair=trade.pair, trade=trade, current_time=sell_row[DATE_IDX], proposed_rate=closerate, current_profit=current_profit) # Use the maximum between close_rate and low as we cannot sell outside of a candle. closerate = min(max(closerate, sell_row[LOW_IDX]), sell_row[HIGH_IDX]) # Confirm trade exit: time_in_force = self.strategy.order_time_in_force['sell'] if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)( pair=trade.pair, trade=trade, order_type='limit', amount=trade.amount, rate=closerate, time_in_force=time_in_force, sell_reason=sell.sell_reason, current_time=sell_candle_time): return None trade.sell_reason = sell.sell_reason # Checks and adds an exit tag, after checking that the length of the # sell_row has the length for an exit tag column if (len(sell_row) > EXIT_TAG_IDX and sell_row[EXIT_TAG_IDX] is not None and len(sell_row[EXIT_TAG_IDX]) > 0): trade.sell_reason = sell_row[EXIT_TAG_IDX] trade.close(closerate, show_msg=False) return trade return None def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]: if self.timeframe_detail and trade.pair in self.detail_data: sell_candle_time = sell_row[DATE_IDX].to_pydatetime() sell_candle_end = sell_candle_time + timedelta( minutes=self.timeframe_min) detail_data = self.detail_data[trade.pair] detail_data = detail_data.loc[ (detail_data['date'] >= sell_candle_time) & (detail_data['date'] < sell_candle_end)].copy() if len(detail_data) == 0: # Fall back to "regular" data if no detail data was found for this candle return self._get_sell_trade_entry_for_candle(trade, sell_row) detail_data.loc[:, 'buy'] = sell_row[BUY_IDX] detail_data.loc[:, 'sell'] = sell_row[SELL_IDX] detail_data.loc[:, 'buy_tag'] = sell_row[BUY_TAG_IDX] detail_data.loc[:, 'exit_tag'] = sell_row[EXIT_TAG_IDX] headers = [ 'date', 'buy', 'open', 'close', 'sell', 'low', 'high', 'buy_tag', 'exit_tag' ] for det_row in detail_data[headers].values.tolist(): res = self._get_sell_trade_entry_for_candle(trade, det_row) if res: return res return None else: return self._get_sell_trade_entry_for_candle(trade, sell_row) def _enter_trade( self, pair: str, row: Tuple, stake_amount: Optional[float] = None, trade: Optional[LocalTrade] = None) -> Optional[LocalTrade]: # let's call the custom entry price, using the open price as default price propose_rate = strategy_safe_wrapper( self.strategy.custom_entry_price, default_retval=row[OPEN_IDX])( pair=pair, current_time=row[DATE_IDX].to_pydatetime(), proposed_rate=row[OPEN_IDX]) # default value is the open rate # Move rate to within the candle's low/high rate propose_rate = min(max(propose_rate, row[LOW_IDX]), row[HIGH_IDX]) min_stake_amount = self.exchange.get_min_pair_stake_amount( pair, propose_rate, -0.05) or 0 max_stake_amount = self.wallets.get_available_stake_amount() pos_adjust = trade is not None if not pos_adjust: try: stake_amount = self.wallets.get_trade_stake_amount(pair, None) except DependencyException: return trade stake_amount = strategy_safe_wrapper( self.strategy.custom_stake_amount, default_retval=stake_amount)( pair=pair, current_time=row[DATE_IDX].to_pydatetime(), current_rate=propose_rate, proposed_stake=stake_amount, min_stake=min_stake_amount, max_stake=max_stake_amount) stake_amount = self.wallets.validate_stake_amount( pair, stake_amount, min_stake_amount) if not stake_amount: # In case of pos adjust, still return the original trade # If not pos adjust, trade is None return trade order_type = self.strategy.order_types['buy'] time_in_force = self.strategy.order_time_in_force['sell'] # Confirm trade entry: if not pos_adjust: if not strategy_safe_wrapper( self.strategy.confirm_trade_entry, default_retval=True)( pair=pair, order_type=order_type, amount=stake_amount, rate=propose_rate, time_in_force=time_in_force, current_time=row[DATE_IDX].to_pydatetime()): return None if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount): amount = round(stake_amount / propose_rate, 8) if trade is None: # Enter trade has_buy_tag = len(row) >= BUY_TAG_IDX + 1 trade = LocalTrade( pair=pair, open_rate=propose_rate, open_date=row[DATE_IDX].to_pydatetime(), stake_amount=stake_amount, amount=amount, fee_open=self.fee, fee_close=self.fee, is_open=True, buy_tag=row[BUY_TAG_IDX] if has_buy_tag else None, exchange='backtesting', orders=[]) order = Order(ft_is_open=False, ft_pair=trade.pair, symbol=trade.pair, ft_order_side="buy", side="buy", order_type="market", status="closed", price=propose_rate, average=propose_rate, amount=amount, filled=amount, cost=stake_amount + trade.fee_open) trade.orders.append(order) if pos_adjust: trade.recalc_trade_from_orders() return trade def handle_left_open(self, open_trades: Dict[str, List[LocalTrade]], data: Dict[str, List[Tuple]]) -> List[LocalTrade]: """ Handling of left open trades at the end of backtesting """ trades = [] for pair in open_trades.keys(): if len(open_trades[pair]) > 0: for trade in open_trades[pair]: sell_row = data[pair][-1] trade.close_date = sell_row[DATE_IDX].to_pydatetime() trade.sell_reason = SellType.FORCE_SELL.value trade.close(sell_row[OPEN_IDX], show_msg=False) LocalTrade.close_bt_trade(trade) # Deepcopy object to have wallets update correctly trade1 = deepcopy(trade) trade1.is_open = True trades.append(trade1) return trades def trade_slot_available(self, max_open_trades: int, open_trade_count: int) -> bool: # Always allow trades when max_open_trades is enabled. if max_open_trades <= 0 or open_trade_count < max_open_trades: return True # Rejected trade self.rejected_trades += 1 return False def backtest(self, processed: Dict, start_date: datetime, end_date: datetime, max_open_trades: int = 0, position_stacking: bool = False, enable_protections: bool = False) -> Dict[str, Any]: """ Implement backtesting functionality NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized. Of course try to not have ugly code. By some accessor are sometime slower than functions. Avoid extensive logging in this method and functions it calls. :param processed: a processed dictionary with format {pair, data}, which gets cleared to optimize memory usage! :param start_date: backtesting timerange start datetime :param end_date: backtesting timerange end datetime :param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited :param position_stacking: do we allow position stacking? :param enable_protections: Should protections be enabled? :return: DataFrame with trades (results of backtesting) """ trades: List[LocalTrade] = [] self.prepare_backtest(enable_protections) # Use dict of lists with data for performance # (looping lists is a lot faster than pandas DataFrames) data: Dict = self._get_ohlcv_as_lists(processed) # Indexes per pair, so some pairs are allowed to have a missing start. indexes: Dict = defaultdict(int) tmp = start_date + timedelta(minutes=self.timeframe_min) open_trades: Dict[str, List[LocalTrade]] = defaultdict(list) open_trade_count = 0 self.progress.init_step( BacktestState.BACKTEST, int((end_date - start_date) / timedelta(minutes=self.timeframe_min))) # Loop timerange and get candle for each pair at that point in time while tmp <= end_date: open_trade_count_start = open_trade_count self.check_abort() for i, pair in enumerate(data): row_index = indexes[pair] try: # Row is treated as "current incomplete candle". # Buy / sell signals are shifted by 1 to compensate for this. row = data[pair][row_index] except IndexError: # missing Data for one pair at the end. # Warnings for this are shown during data loading continue # Waits until the time-counter reaches the start of the data for this pair. if row[DATE_IDX] > tmp: continue row_index += 1 indexes[pair] = row_index self.dataprovider._set_dataframe_max_index(row_index) # without positionstacking, we can only have one open trade per pair. # max_open_trades must be respected # don't open on the last row if ((position_stacking or len(open_trades[pair]) == 0) and self.trade_slot_available(max_open_trades, open_trade_count_start) and tmp != end_date and row[BUY_IDX] == 1 and row[SELL_IDX] != 1 and not PairLocks.is_pair_locked(pair, row[DATE_IDX])): trade = self._enter_trade(pair, row) if trade: # TODO: hacky workaround to avoid opening > max_open_trades # This emulates previous behaviour - not sure if this is correct # Prevents buying if the trade-slot was freed in this candle open_trade_count_start += 1 open_trade_count += 1 # logger.debug(f"{pair} - Emulate creation of new trade: {trade}.") open_trades[pair].append(trade) LocalTrade.add_bt_trade(trade) for trade in list(open_trades[pair]): # also check the buying candle for sell conditions. trade_entry = self._get_sell_trade_entry(trade, row) # Sell occurred if trade_entry: # logger.debug(f"{pair} - Backtesting sell {trade}") open_trade_count -= 1 open_trades[pair].remove(trade) LocalTrade.close_bt_trade(trade) trades.append(trade_entry) if enable_protections: self.protections.stop_per_pair(pair, row[DATE_IDX]) self.protections.global_stop(tmp) # Move time one configured time_interval ahead. self.progress.increment() tmp += timedelta(minutes=self.timeframe_min) trades += self.handle_left_open(open_trades, data=data) self.wallets.update() results = trade_list_to_dataframe(trades) return { 'results': results, 'config': self.strategy.config, 'locks': PairLocks.get_all_locks(), 'rejected_signals': self.rejected_trades, 'final_balance': self.wallets.get_total(self.strategy.config['stake_currency']), } def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, DataFrame], timerange: TimeRange): self.progress.init_step(BacktestState.ANALYZE, 0) logger.info("Running backtesting for Strategy %s", strat.get_strategy_name()) backtest_start_time = datetime.now(timezone.utc) self._set_strategy(strat) strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)() # Use max_open_trades in backtesting, except --disable-max-market-positions is set if self.config.get('use_max_market_positions', True): # Must come from strategy config, as the strategy may modify this setting. max_open_trades = self.strategy.config['max_open_trades'] else: logger.info( 'Ignoring max_open_trades (--disable-max-market-positions was used) ...' ) max_open_trades = 0 # need to reprocess data every time to populate signals preprocessed = self.strategy.advise_all_indicators(data) # Trim startup period from analyzed dataframe preprocessed_tmp = trim_dataframes(preprocessed, timerange, self.required_startup) if not preprocessed_tmp: raise OperationalException( "No data left after adjusting for startup candles.") # Use preprocessed_tmp for date generation (the trimmed dataframe). # Backtesting will re-trim the dataframes after buy/sell signal generation. min_date, max_date = history.get_timerange(preprocessed_tmp) logger.info( f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} ' f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} ' f'({(max_date - min_date).days} days).') # Execute backtest and store results results = self.backtest( processed=preprocessed, start_date=min_date, end_date=max_date, max_open_trades=max_open_trades, position_stacking=self.config.get('position_stacking', False), enable_protections=self.config.get('enable_protections', False), ) backtest_end_time = datetime.now(timezone.utc) results.update({ 'run_id': self.run_ids.get(strat.get_strategy_name(), ''), 'backtest_start_time': int(backtest_start_time.timestamp()), 'backtest_end_time': int(backtest_end_time.timestamp()), }) self.all_results[self.strategy.get_strategy_name()] = results return min_date, max_date def _get_min_cached_backtest_date(self): min_backtest_date = None backtest_cache_age = self.config.get('backtest_cache', constants.BACKTEST_CACHE_DEFAULT) if self.timerange.stopts == 0 or datetime.fromtimestamp( self.timerange.stopts, tz=timezone.utc) > datetime.now(tz=timezone.utc): logger.warning( 'Backtest result caching disabled due to use of open-ended timerange.' ) elif backtest_cache_age == 'day': min_backtest_date = datetime.now(tz=timezone.utc) - timedelta( days=1) elif backtest_cache_age == 'week': min_backtest_date = datetime.now(tz=timezone.utc) - timedelta( weeks=1) elif backtest_cache_age == 'month': min_backtest_date = datetime.now(tz=timezone.utc) - timedelta( weeks=4) return min_backtest_date def load_prior_backtest(self): self.run_ids = { strategy.get_strategy_name(): get_strategy_run_id(strategy) for strategy in self.strategylist } # Load previous result that will be updated incrementally. # This can be circumvented in certain instances in combination with downloading more data min_backtest_date = self._get_min_cached_backtest_date() if min_backtest_date is not None: self.results = find_existing_backtest_stats( self.config['user_data_dir'] / 'backtest_results', self.run_ids, min_backtest_date) def start(self) -> None: """ Run backtesting end-to-end :return: None """ data: Dict[str, Any] = {} data, timerange = self.load_bt_data() self.load_bt_data_detail() logger.info("Dataload complete. Calculating indicators") self.load_prior_backtest() for strat in self.strategylist: if self.results and strat.get_strategy_name( ) in self.results['strategy']: # When previous result hash matches - reuse that result and skip backtesting. logger.info( f'Reusing result of previous backtest for {strat.get_strategy_name()}' ) continue min_date, max_date = self.backtest_one_strategy( strat, data, timerange) # Update old results with new ones. if len(self.all_results) > 0: results = generate_backtest_stats(data, self.all_results, min_date=min_date, max_date=max_date) if self.results: self.results['metadata'].update(results['metadata']) self.results['strategy'].update(results['strategy']) self.results['strategy_comparison'].extend( results['strategy_comparison']) else: self.results = results if self.config.get('export', 'none') == 'trades': store_backtest_stats(self.config['exportfilename'], self.results) # Results may be mixed up now. Sort them so they follow --strategy-list order. if 'strategy_list' in self.config and len(self.results) > 0: self.results['strategy_comparison'] = sorted( self.results['strategy_comparison'], key=lambda c: self.config['strategy_list'].index(c['key'])) self.results['strategy'] = dict( sorted( self.results['strategy'].items(), key=lambda kv: self.config['strategy_list'].index(kv[0]))) if len(self.strategylist) > 0: # Show backtest results show_backtest_results(self.config, self.results)
class Backtesting: """ Backtesting class, this class contains all the logic to run a backtest To run a backtest: backtesting = Backtesting(config) backtesting.start() """ def __init__(self, config: Dict[str, Any]) -> None: LoggingMixin.show_output = False self.config = config # Reset keys for backtesting remove_credentials(self.config) self.strategylist: List[IStrategy] = [] self.all_results: Dict[str, Dict] = {} self.exchange = ExchangeResolver.load_exchange( self.config['exchange']['name'], self.config) self.dataprovider = DataProvider(self.config, None) if self.config.get('strategy_list', None): for strat in list(self.config['strategy_list']): stratconf = deepcopy(self.config) stratconf['strategy'] = strat self.strategylist.append( StrategyResolver.load_strategy(stratconf)) validate_config_consistency(stratconf) else: # No strategy list specified, only one strategy self.strategylist.append( StrategyResolver.load_strategy(self.config)) validate_config_consistency(self.config) if "timeframe" not in self.config: raise OperationalException( "Timeframe (ticker interval) needs to be set in either " "configuration or as cli argument `--timeframe 5m`") self.timeframe = str(self.config.get('timeframe')) self.timeframe_min = timeframe_to_minutes(self.timeframe) self.pairlists = PairListManager(self.exchange, self.config) if 'VolumePairList' in self.pairlists.name_list: raise OperationalException( "VolumePairList not allowed for backtesting.") if 'PerformanceFilter' in self.pairlists.name_list: raise OperationalException( "PerformanceFilter not allowed for backtesting.") if len(self.strategylist ) > 1 and 'PrecisionFilter' in self.pairlists.name_list: raise OperationalException( "PrecisionFilter not allowed for backtesting multiple strategies." ) self.dataprovider.add_pairlisthandler(self.pairlists) self.pairlists.refresh_pairlist() if len(self.pairlists.whitelist) == 0: raise OperationalException("No pair in whitelist.") if config.get('fee', None) is not None: self.fee = config['fee'] else: self.fee = self.exchange.get_fee( symbol=self.pairlists.whitelist[0]) Trade.use_db = False Trade.reset_trades() PairLocks.timeframe = self.config['timeframe'] PairLocks.use_db = False PairLocks.reset_locks() self.wallets = Wallets(self.config, self.exchange, log=False) # Get maximum required startup period self.required_startup = max( [strat.startup_candle_count for strat in self.strategylist]) def __del__(self): LoggingMixin.show_output = True PairLocks.use_db = True Trade.use_db = True def _set_strategy(self, strategy: IStrategy): """ Load strategy into backtesting """ self.strategy: IStrategy = strategy strategy.dp = self.dataprovider # Set stoploss_on_exchange to false for backtesting, # since a "perfect" stoploss-sell is assumed anyway # And the regular "stoploss" function would not apply to that case self.strategy.order_types['stoploss_on_exchange'] = False if self.config.get('enable_protections', False): conf = self.config if hasattr(strategy, 'protections'): conf = deepcopy(conf) conf['protections'] = strategy.protections self.protections = ProtectionManager(self.config, strategy.protections) def load_bt_data(self) -> Tuple[Dict[str, DataFrame], TimeRange]: """ Loads backtest data and returns the data combined with the timerange as tuple. """ timerange = TimeRange.parse_timerange(None if self.config.get( 'timerange') is None else str(self.config.get('timerange'))) data = history.load_data( datadir=self.config['datadir'], pairs=self.pairlists.whitelist, timeframe=self.timeframe, timerange=timerange, startup_candles=self.required_startup, fail_without_data=True, data_format=self.config.get('dataformat_ohlcv', 'json'), ) min_date, max_date = history.get_timerange(data) logger.info( f'Loading data from {min_date.strftime(DATETIME_PRINT_FORMAT)} ' f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} ' f'({(max_date - min_date).days} days).') # Adjust startts forward if not enough data is available timerange.adjust_start_if_necessary( timeframe_to_seconds(self.timeframe), self.required_startup, min_date) return data, timerange def prepare_backtest(self, enable_protections): """ Backtesting setup method - called once for every call to "backtest()". """ PairLocks.use_db = False PairLocks.timeframe = self.config['timeframe'] Trade.use_db = False PairLocks.reset_locks() Trade.reset_trades() self.rejected_trades = 0 self.dataprovider.clear_cache() def _get_ohlcv_as_lists( self, processed: Dict[str, DataFrame]) -> Dict[str, Tuple]: """ Helper function to convert a processed dataframes into lists for performance reasons. Used by backtest() - so keep this optimized for performance. """ # Every change to this headers list must evaluate further usages of the resulting tuple # and eventually change the constants for indexes at the top headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high'] data: Dict = {} # Create dict with data for pair, pair_data in processed.items(): if not pair_data.empty: pair_data.loc[:, 'buy'] = 0 # cleanup if buy_signal is exist pair_data.loc[:, 'sell'] = 0 # cleanup if sell_signal is exist df_analyzed = self.strategy.advise_sell( self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy() # To avoid using data from future, we use buy/sell signals shifted # from the previous candle df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1) df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1) df_analyzed.drop(df_analyzed.head(1).index, inplace=True) # Convert from Pandas to list for performance reasons # (Looping Pandas is slow.) data[pair] = df_analyzed.values.tolist() return data def _get_close_rate(self, sell_row: Tuple, trade: LocalTrade, sell: SellCheckTuple, trade_dur: int) -> float: """ Get close rate for backtesting result """ # Special handling if high or low hit STOP_LOSS or ROI if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS): if trade.stop_loss > sell_row[HIGH_IDX]: # our stoploss was already higher than candle high, # possibly due to a cancelled trade exit. # sell at open price. return sell_row[OPEN_IDX] # Special case: trailing triggers within same candle as trade opened. Assume most # pessimistic price movement, which is moving just enough to arm stoploss and # immediately going down to stop price. if (sell.sell_type == SellType.TRAILING_STOP_LOSS and trade_dur == 0 and self.strategy.trailing_stop_positive): if self.strategy.trailing_only_offset_is_reached: # Worst case: price reaches stop_positive_offset and dives down. stop_rate = ( sell_row[OPEN_IDX] * (1 + abs(self.strategy.trailing_stop_positive_offset) - abs(self.strategy.trailing_stop_positive))) else: # Worst case: price ticks tiny bit above open and dives down. stop_rate = sell_row[OPEN_IDX] * ( 1 - abs(self.strategy.trailing_stop_positive)) assert stop_rate < sell_row[HIGH_IDX] return stop_rate # Set close_rate to stoploss return trade.stop_loss elif sell.sell_type == (SellType.ROI): roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur) if roi is not None and roi_entry is not None: if roi == -1 and roi_entry % self.timeframe_min == 0: # When forceselling with ROI=-1, the roi time will always be equal to trade_dur. # If that entry is a multiple of the timeframe (so on candle open) # - we'll use open instead of close return sell_row[OPEN_IDX] # - (Expected abs profit + open_rate + open_fee) / (fee_close -1) close_rate = -(trade.open_rate * roi + trade.open_rate * (1 + trade.fee_open)) / (trade.fee_close - 1) if (trade_dur > 0 and trade_dur == roi_entry and roi_entry % self.timeframe_min == 0 and sell_row[OPEN_IDX] > close_rate): # new ROI entry came into effect. # use Open rate if open_rate > calculated sell rate return sell_row[OPEN_IDX] # Use the maximum between close_rate and low as we # cannot sell outside of a candle. # Applies when a new ROI setting comes in place and the whole candle is above that. return min(max(close_rate, sell_row[LOW_IDX]), sell_row[HIGH_IDX]) else: # This should not be reached... return sell_row[OPEN_IDX] else: return sell_row[OPEN_IDX] def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]: sell = self.strategy.should_sell( trade, sell_row[OPEN_IDX], # type: ignore sell_row[DATE_IDX].to_pydatetime(), sell_row[BUY_IDX], sell_row[SELL_IDX], low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX]) if sell.sell_flag: trade.close_date = sell_row[DATE_IDX].to_pydatetime() trade.sell_reason = sell.sell_reason trade_dur = int( (trade.close_date_utc - trade.open_date_utc).total_seconds() // 60) closerate = self._get_close_rate(sell_row, trade, sell, trade_dur) # Confirm trade exit: time_in_force = self.strategy.order_time_in_force['sell'] if not strategy_safe_wrapper( self.strategy.confirm_trade_exit, default_retval=True)( pair=trade.pair, trade=trade, order_type='limit', amount=trade.amount, rate=closerate, time_in_force=time_in_force, sell_reason=sell.sell_reason, current_time=sell_row[DATE_IDX].to_pydatetime()): return None trade.close(closerate, show_msg=False) return trade return None def _enter_trade(self, pair: str, row: List) -> Optional[LocalTrade]: try: stake_amount = self.wallets.get_trade_stake_amount(pair, None) except DependencyException: return None min_stake_amount = self.exchange.get_min_pair_stake_amount( pair, row[OPEN_IDX], -0.05) order_type = self.strategy.order_types['buy'] time_in_force = self.strategy.order_time_in_force['sell'] # Confirm trade entry: if not strategy_safe_wrapper( self.strategy.confirm_trade_entry, default_retval=True)( pair=pair, order_type=order_type, amount=stake_amount, rate=row[OPEN_IDX], time_in_force=time_in_force, current_time=row[DATE_IDX].to_pydatetime()): return None if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount): # Enter trade trade = LocalTrade( pair=pair, open_rate=row[OPEN_IDX], open_date=row[DATE_IDX].to_pydatetime(), stake_amount=stake_amount, amount=round(stake_amount / row[OPEN_IDX], 8), fee_open=self.fee, fee_close=self.fee, is_open=True, exchange='backtesting', ) return trade return None def handle_left_open(self, open_trades: Dict[str, List[LocalTrade]], data: Dict[str, List[Tuple]]) -> List[LocalTrade]: """ Handling of left open trades at the end of backtesting """ trades = [] for pair in open_trades.keys(): if len(open_trades[pair]) > 0: for trade in open_trades[pair]: sell_row = data[pair][-1] trade.close_date = sell_row[DATE_IDX].to_pydatetime() trade.sell_reason = SellType.FORCE_SELL.value trade.close(sell_row[OPEN_IDX], show_msg=False) LocalTrade.close_bt_trade(trade) # Deepcopy object to have wallets update correctly trade1 = deepcopy(trade) trade1.is_open = True trades.append(trade1) return trades def trade_slot_available(self, max_open_trades: int, open_trade_count: int) -> bool: # Always allow trades when max_open_trades is enabled. if max_open_trades <= 0 or open_trade_count < max_open_trades: return True # Rejected trade self.rejected_trades += 1 return False def backtest(self, processed: Dict, start_date: datetime, end_date: datetime, max_open_trades: int = 0, position_stacking: bool = False, enable_protections: bool = False) -> Dict[str, Any]: """ Implement backtesting functionality NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized. Of course try to not have ugly code. By some accessor are sometime slower than functions. Avoid extensive logging in this method and functions it calls. :param processed: a processed dictionary with format {pair, data} :param start_date: backtesting timerange start datetime :param end_date: backtesting timerange end datetime :param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited :param position_stacking: do we allow position stacking? :param enable_protections: Should protections be enabled? :return: DataFrame with trades (results of backtesting) """ trades: List[LocalTrade] = [] self.prepare_backtest(enable_protections) # Update dataprovider cache for pair, dataframe in processed.items(): self.dataprovider._set_cached_df(pair, self.timeframe, dataframe) # Use dict of lists with data for performance # (looping lists is a lot faster than pandas DataFrames) data: Dict = self._get_ohlcv_as_lists(processed) # Indexes per pair, so some pairs are allowed to have a missing start. indexes: Dict = defaultdict(int) tmp = start_date + timedelta(minutes=self.timeframe_min) open_trades: Dict[str, List[LocalTrade]] = defaultdict(list) open_trade_count = 0 # Loop timerange and get candle for each pair at that point in time while tmp <= end_date: open_trade_count_start = open_trade_count for i, pair in enumerate(data): row_index = indexes[pair] try: row = data[pair][row_index] except IndexError: # missing Data for one pair at the end. # Warnings for this are shown during data loading continue # Waits until the time-counter reaches the start of the data for this pair. if row[DATE_IDX] > tmp: continue row_index += 1 self.dataprovider._set_dataframe_max_index(row_index) indexes[pair] = row_index # without positionstacking, we can only have one open trade per pair. # max_open_trades must be respected # don't open on the last row if ((position_stacking or len(open_trades[pair]) == 0) and self.trade_slot_available(max_open_trades, open_trade_count_start) and tmp != end_date and row[BUY_IDX] == 1 and row[SELL_IDX] != 1 and not PairLocks.is_pair_locked(pair, row[DATE_IDX])): trade = self._enter_trade(pair, row) if trade: # TODO: hacky workaround to avoid opening > max_open_trades # This emulates previous behaviour - not sure if this is correct # Prevents buying if the trade-slot was freed in this candle open_trade_count_start += 1 open_trade_count += 1 # logger.debug(f"{pair} - Emulate creation of new trade: {trade}.") open_trades[pair].append(trade) LocalTrade.add_bt_trade(trade) for trade in open_trades[pair]: # also check the buying candle for sell conditions. trade_entry = self._get_sell_trade_entry(trade, row) # Sell occured if trade_entry: # logger.debug(f"{pair} - Backtesting sell {trade}") open_trade_count -= 1 open_trades[pair].remove(trade) LocalTrade.close_bt_trade(trade) trades.append(trade_entry) if enable_protections: self.protections.stop_per_pair(pair, row[DATE_IDX]) self.protections.global_stop(tmp) # Move time one configured time_interval ahead. tmp += timedelta(minutes=self.timeframe_min) trades += self.handle_left_open(open_trades, data=data) self.wallets.update() results = trade_list_to_dataframe(trades) return { 'results': results, 'config': self.strategy.config, 'locks': PairLocks.get_all_locks(), 'rejected_signals': self.rejected_trades, 'final_balance': self.wallets.get_total(self.strategy.config['stake_currency']), } def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, Any], timerange: TimeRange): logger.info("Running backtesting for Strategy %s", strat.get_strategy_name()) backtest_start_time = datetime.now(timezone.utc) self._set_strategy(strat) strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)() # Use max_open_trades in backtesting, except --disable-max-market-positions is set if self.config.get('use_max_market_positions', True): # Must come from strategy config, as the strategy may modify this setting. max_open_trades = self.strategy.config['max_open_trades'] else: logger.info( 'Ignoring max_open_trades (--disable-max-market-positions was used) ...' ) max_open_trades = 0 # need to reprocess data every time to populate signals preprocessed = self.strategy.ohlcvdata_to_dataframe(data) # Trim startup period from analyzed dataframe preprocessed = trim_dataframes(preprocessed, timerange, self.required_startup) if not preprocessed: raise OperationalException( "No data left after adjusting for startup candles.") min_date, max_date = history.get_timerange(preprocessed) logger.info( f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} ' f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} ' f'({(max_date - min_date).days} days).') # Execute backtest and store results results = self.backtest( processed=preprocessed, start_date=min_date, end_date=max_date, max_open_trades=max_open_trades, position_stacking=self.config.get('position_stacking', False), enable_protections=self.config.get('enable_protections', False), ) backtest_end_time = datetime.now(timezone.utc) results.update({ 'backtest_start_time': int(backtest_start_time.timestamp()), 'backtest_end_time': int(backtest_end_time.timestamp()), }) self.all_results[self.strategy.get_strategy_name()] = results return min_date, max_date def start(self) -> None: """ Run backtesting end-to-end :return: None """ data: Dict[str, Any] = {} data, timerange = self.load_bt_data() logger.info("Dataload complete. Calculating indicators") for strat in self.strategylist: min_date, max_date = self.backtest_one_strategy( strat, data, timerange) if len(self.strategylist) > 0: stats = generate_backtest_stats(data, self.all_results, min_date=min_date, max_date=max_date) if self.config.get('export', 'none') == 'trades': store_backtest_stats(self.config['exportfilename'], stats) # Show backtest results show_backtest_results(self.config, stats)
class FreqtradeBot(object): """ Freqtrade is the main class of the bot. This is from here the bot start its logic. """ def __init__(self, config: Dict[str, Any]) -> None: """ Init all variables and object the bot need to work :param config: configuration dict, you can use the Configuration.get_config() method to get the config dict. """ logger.info( 'Starting freqtrade %s', __version__, ) # Init bot states self.state = State.STOPPED # Init objects self.config = config self.strategy: IStrategy = StrategyResolver(self.config).strategy self.rpc: RPCManager = RPCManager(self) self.persistence = None self.exchange = Exchange(self.config) self.wallets = Wallets(self.exchange) pairlistname = self.config.get('pairlist', {}).get('method', 'StaticPairList') self.pairlists = PairListResolver(pairlistname, self, self.config).pairlist # Initializing Edge only if enabled self.edge = Edge(self.config, self.exchange, self.strategy) if \ self.config.get('edge', {}).get('enabled', False) else None self.active_pair_whitelist: List[str] = self.config['exchange'][ 'pair_whitelist'] self._init_modules() def _init_modules(self) -> None: """ Initializes all modules and updates the config :return: None """ # Initialize all modules persistence.init(self.config) # Set initial application state initial_state = self.config.get('initial_state') if initial_state: self.state = State[initial_state.upper()] else: self.state = State.STOPPED def cleanup(self) -> None: """ Cleanup pending resources on an already stopped bot :return: None """ logger.info('Cleaning up modules ...') self.rpc.cleanup() persistence.cleanup() def worker(self, old_state: State = None) -> State: """ Trading routine that must be run at each loop :param old_state: the previous service state from the previous call :return: current service state """ # Log state transition state = self.state if state != old_state: self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'{state.name.lower()}' }) logger.info('Changing state to: %s', state.name) if state == State.RUNNING: self.rpc.startup_messages(self.config, self.pairlists) if state == State.STOPPED: time.sleep(1) elif state == State.RUNNING: min_secs = self.config.get('internals', {}).get('process_throttle_secs', constants.PROCESS_THROTTLE_SECS) self._throttle(func=self._process, min_secs=min_secs) return state def _throttle(self, func: Callable[..., Any], min_secs: float, *args, **kwargs) -> Any: """ Throttles the given callable that it takes at least `min_secs` to finish execution. :param func: Any callable :param min_secs: minimum execution time in seconds :return: Any """ start = time.time() result = func(*args, **kwargs) end = time.time() duration = max(min_secs - (end - start), 0.0) logger.debug('Throttling %s for %.2f seconds', func.__name__, duration) time.sleep(duration) return result def _process(self) -> bool: """ Queries the persistence layer for open trades and handles them, otherwise a new trade is created. :return: True if one or more trades has been created or closed, False otherwise """ state_changed = False try: # Refresh whitelist self.pairlists.refresh_pairlist() self.active_pair_whitelist = self.pairlists.whitelist # Calculating Edge positiong # Should be called before refresh_tickers # Otherwise it will override cached klines in exchange # with delta value (klines only from last refresh_pairs) if self.edge: self.edge.calculate() self.active_pair_whitelist = self.edge.adjust( self.active_pair_whitelist) # Query trades from persistence layer trades = Trade.query.filter(Trade.is_open.is_(True)).all() # Extend active-pair whitelist with pairs from open trades # ensures that tickers are downloaded for open trades self.active_pair_whitelist.extend([ trade.pair for trade in trades if trade.pair not in self.active_pair_whitelist ]) # Refreshing candles self.exchange.refresh_tickers(self.active_pair_whitelist, self.strategy.ticker_interval) # First process current opened trades for trade in trades: state_changed |= self.process_maybe_execute_sell(trade) # Then looking for buy opportunities if len(trades) < self.config['max_open_trades']: state_changed = self.process_maybe_execute_buy() if 'unfilledtimeout' in self.config: # Check and handle any timed out open orders self.check_handle_timedout() Trade.session.flush() except TemporaryError as error: logger.warning('%s, retrying in 30 seconds...', error) time.sleep(constants.RETRY_TIMEOUT) except OperationalException: tb = traceback.format_exc() hint = 'Issue `/start` if you think it is safe to restart.' self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'OperationalException:\n```\n{tb}```{hint}' }) logger.exception('OperationalException. Stopping trader ...') self.state = State.STOPPED return state_changed def get_target_bid(self, pair: str, ticker: Dict[str, float]) -> float: """ Calculates bid target between current ask price and last price :param ticker: Ticker to use for getting Ask and Last Price :return: float: Price """ if ticker['ask'] < ticker['last']: ticker_rate = ticker['ask'] else: balance = self.config['bid_strategy']['ask_last_balance'] ticker_rate = ticker['ask'] + balance * (ticker['last'] - ticker['ask']) used_rate = ticker_rate config_bid_strategy = self.config.get('bid_strategy', {}) if 'use_order_book' in config_bid_strategy and\ config_bid_strategy.get('use_order_book', False): logger.info('Getting price from order book') order_book_top = config_bid_strategy.get('order_book_top', 1) order_book = self.exchange.get_order_book(pair, order_book_top) logger.debug('order_book %s', order_book) # top 1 = index 0 order_book_rate = order_book['bids'][order_book_top - 1][0] # if ticker has lower rate, then use ticker ( usefull if down trending ) logger.info('...top %s order book buy rate %0.8f', order_book_top, order_book_rate) if ticker_rate < order_book_rate: logger.info('...using ticker rate instead %0.8f', ticker_rate) used_rate = ticker_rate else: used_rate = order_book_rate else: logger.info('Using Last Ask / Last Price') used_rate = ticker_rate return used_rate def _get_trade_stake_amount(self, pair) -> Optional[float]: """ Check if stake amount can be fulfilled with the available balance for the stake currency :return: float: Stake Amount """ if self.edge: return self.edge.stake_amount( pair, self.wallets.get_free(self.config['stake_currency']), self.wallets.get_total(self.config['stake_currency']), Trade.total_open_trades_stakes()) else: stake_amount = self.config['stake_amount'] avaliable_amount = self.wallets.get_free(self.config['stake_currency']) if stake_amount == constants.UNLIMITED_STAKE_AMOUNT: open_trades = len( Trade.query.filter(Trade.is_open.is_(True)).all()) if open_trades >= self.config['max_open_trades']: logger.warning( 'Can\'t open a new trade: max number of trades is reached') return None return avaliable_amount / (self.config['max_open_trades'] - open_trades) # Check if stake_amount is fulfilled if avaliable_amount < stake_amount: raise DependencyException( 'Available balance(%f %s) is lower than stake amount(%f %s)' % (avaliable_amount, self.config['stake_currency'], stake_amount, self.config['stake_currency'])) return stake_amount def _get_min_pair_stake_amount(self, pair: str, price: float) -> Optional[float]: markets = self.exchange.get_markets() markets = [m for m in markets if m['symbol'] == pair] if not markets: raise ValueError( f'Can\'t get market information for symbol {pair}') market = markets[0] if 'limits' not in market: return None min_stake_amounts = [] limits = market['limits'] if ('cost' in limits and 'min' in limits['cost'] and limits['cost']['min'] is not None): min_stake_amounts.append(limits['cost']['min']) if ('amount' in limits and 'min' in limits['amount'] and limits['amount']['min'] is not None): min_stake_amounts.append(limits['amount']['min'] * price) if not min_stake_amounts: return None amount_reserve_percent = 1 - 0.05 # reserve 5% + stoploss if self.strategy.stoploss is not None: amount_reserve_percent += self.strategy.stoploss # it should not be more than 50% amount_reserve_percent = max(amount_reserve_percent, 0.5) return min(min_stake_amounts) / amount_reserve_percent def create_trade(self) -> bool: """ Checks the implemented trading indicator(s) for a randomly picked pair, if one pair triggers the buy_signal a new trade record gets created :return: True if a trade object has been created and persisted, False otherwise """ interval = self.strategy.ticker_interval whitelist = copy.deepcopy(self.active_pair_whitelist) # Remove currently opened and latest pairs from whitelist for trade in Trade.query.filter(Trade.is_open.is_(True)).all(): if trade.pair in whitelist: whitelist.remove(trade.pair) logger.debug('Ignoring %s in pair whitelist', trade.pair) if not whitelist: raise DependencyException('No currency pairs in whitelist') # running get_signal on historical data fetched for _pair in whitelist: (buy, sell) = self.strategy.get_signal(_pair, interval, self.exchange.klines(_pair)) if buy and not sell: stake_amount = self._get_trade_stake_amount(_pair) if not stake_amount: return False logger.info( 'Buy signal found: about create a new trade with stake_amount: %f ...', stake_amount) bidstrat_check_depth_of_market = self.config.get('bid_strategy', {}).\ get('check_depth_of_market', {}) if (bidstrat_check_depth_of_market.get('enabled', False)) and\ (bidstrat_check_depth_of_market.get('bids_to_ask_delta', 0) > 0): if self._check_depth_of_market_buy( _pair, bidstrat_check_depth_of_market): return self.execute_buy(_pair, stake_amount) else: return False return self.execute_buy(_pair, stake_amount) return False def _check_depth_of_market_buy(self, pair: str, conf: Dict) -> bool: """ Checks depth of market before executing a buy """ conf_bids_to_ask_delta = conf.get('bids_to_ask_delta', 0) logger.info('checking depth of market for %s', pair) order_book = self.exchange.get_order_book(pair, 1000) order_book_data_frame = order_book_to_dataframe( order_book['bids'], order_book['asks']) order_book_bids = order_book_data_frame['b_size'].sum() order_book_asks = order_book_data_frame['a_size'].sum() bids_ask_delta = order_book_bids / order_book_asks logger.info('bids: %s, asks: %s, delta: %s', order_book_bids, order_book_asks, bids_ask_delta) if bids_ask_delta >= conf_bids_to_ask_delta: return True return False def execute_buy(self, pair: str, stake_amount: float, price: Optional[float] = None) -> bool: """ Executes a limit buy for the given pair :param pair: pair for which we want to create a LIMIT_BUY :return: None """ pair_s = pair.replace('_', '/') pair_url = self.exchange.get_pair_detail_url(pair) stake_currency = self.config['stake_currency'] fiat_currency = self.config.get('fiat_display_currency', None) time_in_force = self.strategy.order_time_in_force['buy'] if price: buy_limit_requested = price else: # Calculate amount buy_limit_requested = self.get_target_bid( pair, self.exchange.get_ticker(pair)) min_stake_amount = self._get_min_pair_stake_amount( pair_s, buy_limit_requested) if min_stake_amount is not None and min_stake_amount > stake_amount: logger.warning( f'Can\'t open a new trade for {pair_s}: stake amount' f' is too small ({stake_amount} < {min_stake_amount})') return False amount = stake_amount / buy_limit_requested order = self.exchange.buy(pair=pair, ordertype=self.strategy.order_types['buy'], amount=amount, rate=buy_limit_requested, time_in_force=time_in_force) order_id = order['id'] order_status = order.get('status', None) # we assume the order is executed at the price requested buy_limit_filled_price = buy_limit_requested if order_status == 'expired' or order_status == 'rejected': order_type = self.strategy.order_types['buy'] order_tif = self.strategy.order_time_in_force['buy'] # return false if the order is not filled if float(order['filled']) == 0: logger.warning( 'Buy %s order with time in force %s for %s is %s by %s.' ' zero amount is fulfilled.', order_tif, order_type, pair_s, order_status, self.exchange.name) return False else: # the order is partially fulfilled # in case of IOC orders we can check immediately # if the order is fulfilled fully or partially logger.warning( 'Buy %s order with time in force %s for %s is %s by %s.' ' %s amount fulfilled out of %s (%s remaining which is canceled).', order_tif, order_type, pair_s, order_status, self.exchange.name, order['filled'], order['amount'], order['remaining']) stake_amount = order['cost'] amount = order['amount'] buy_limit_filled_price = order['price'] order_id = None # in case of FOK the order may be filled immediately and fully elif order_status == 'closed': stake_amount = order['cost'] amount = order['amount'] buy_limit_filled_price = order['price'] order_id = None self.rpc.send_msg({ 'type': RPCMessageType.BUY_NOTIFICATION, 'exchange': self.exchange.name.capitalize(), 'pair': pair_s, 'market_url': pair_url, 'limit': buy_limit_filled_price, 'stake_amount': stake_amount, 'stake_currency': stake_currency, 'fiat_currency': fiat_currency }) # Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker') trade = Trade(pair=pair, stake_amount=stake_amount, amount=amount, fee_open=fee, fee_close=fee, open_rate=buy_limit_filled_price, open_rate_requested=buy_limit_requested, open_date=datetime.utcnow(), exchange=self.exchange.id, open_order_id=order_id, strategy=self.strategy.get_strategy_name(), ticker_interval=constants.TICKER_INTERVAL_MINUTES[ self.config['ticker_interval']]) Trade.session.add(trade) Trade.session.flush() # Updating wallets self.wallets.update() return True def process_maybe_execute_buy(self) -> bool: """ Tries to execute a buy trade in a safe way :return: True if executed """ try: # Create entity and execute trade if self.create_trade(): return True logger.info( 'Found no buy signals for whitelisted currencies. Trying again..' ) return False except DependencyException as exception: logger.warning('Unable to create trade: %s', exception) return False def process_maybe_execute_sell(self, trade: Trade) -> bool: """ Tries to execute a sell trade :return: True if executed """ try: # Get order details for actual price per unit if trade.open_order_id: # Update trade with order values logger.info('Found open order for %s', trade) order = self.exchange.get_order(trade.open_order_id, trade.pair) # Try update amount (binance-fix) try: new_amount = self.get_real_amount(trade, order) if order['amount'] != new_amount: order['amount'] = new_amount # Fee was applied, so set to 0 trade.fee_open = 0 except OperationalException as exception: logger.warning("could not update trade amount: %s", exception) trade.update(order) if self.strategy.order_types.get( 'stoploss_on_exchange') and trade.is_open: result = self.handle_stoploss_on_exchange(trade) if result: self.wallets.update() return result if trade.is_open and trade.open_order_id is None: # Check if we can sell our current pair result = self.handle_trade(trade) # Updating wallets if any trade occured if result: self.wallets.update() return result except DependencyException as exception: logger.warning('Unable to sell trade: %s', exception) return False def get_real_amount(self, trade: Trade, order: Dict) -> float: """ Get real amount for the trade Necessary for self.exchanges which charge fees in base currency (e.g. binance) """ order_amount = order['amount'] # Only run for closed orders if trade.fee_open == 0 or order['status'] == 'open': return order_amount # use fee from order-dict if possible if 'fee' in order and order['fee'] and (order['fee'].keys() >= {'currency', 'cost'}): if trade.pair.startswith(order['fee']['currency']): new_amount = order_amount - order['fee']['cost'] logger.info( "Applying fee on amount for %s (from %s to %s) from Order", trade, order['amount'], new_amount) return new_amount # Fallback to Trades trades = self.exchange.get_trades_for_order(trade.open_order_id, trade.pair, trade.open_date) if len(trades) == 0: logger.info( "Applying fee on amount for %s failed: myTrade-Dict empty found", trade) return order_amount amount = 0 fee_abs = 0 for exectrade in trades: amount += exectrade['amount'] if "fee" in exectrade and (exectrade['fee'].keys() >= {'currency', 'cost'}): # only applies if fee is in quote currency! if trade.pair.startswith(exectrade['fee']['currency']): fee_abs += exectrade['fee']['cost'] if amount != order_amount: logger.warning( f"amount {amount} does not match amount {trade.amount}") raise OperationalException("Half bought? Amounts don't match") real_amount = amount - fee_abs if fee_abs != 0: logger.info(f"""Applying fee on amount for {trade} \ (from {order_amount} to {real_amount}) from Trades""") return real_amount def handle_trade(self, trade: Trade) -> bool: """ Sells the current pair if the threshold is reached and updates the trade record. :return: True if trade has been sold, False otherwise """ if not trade.is_open: raise ValueError(f'attempt to handle closed trade: {trade}') logger.debug('Handling %s ...', trade) sell_rate = self.exchange.get_ticker(trade.pair)['bid'] (buy, sell) = (False, False) experimental = self.config.get('experimental', {}) if experimental.get('use_sell_signal') or experimental.get( 'ignore_roi_if_buy_signal'): (buy, sell) = self.strategy.get_signal(trade.pair, self.strategy.ticker_interval, self.exchange.klines(trade.pair)) config_ask_strategy = self.config.get('ask_strategy', {}) if config_ask_strategy.get('use_order_book', False): logger.info('Using order book for selling...') # logger.debug('Order book %s',orderBook) order_book_min = config_ask_strategy.get('order_book_min', 1) order_book_max = config_ask_strategy.get('order_book_max', 1) order_book = self.exchange.get_order_book(trade.pair, order_book_max) for i in range(order_book_min, order_book_max + 1): order_book_rate = order_book['asks'][i - 1][0] # if orderbook has higher rate (high profit), # use orderbook, otherwise just use bids rate logger.info(' order book asks top %s: %0.8f', i, order_book_rate) if sell_rate < order_book_rate: sell_rate = order_book_rate if self.check_sell(trade, sell_rate, buy, sell): return True break else: logger.debug('checking sell') if self.check_sell(trade, sell_rate, buy, sell): return True logger.debug('Found no sell signal for %s.', trade) return False def handle_stoploss_on_exchange(self, trade: Trade) -> bool: """ Check if trade is fulfilled in which case the stoploss on exchange should be added immediately if stoploss on exchnage is enabled. """ result = False # If trade is open and the buy order is fulfilled but there is no stoploss, # then we add a stoploss on exchange if not trade.open_order_id and not trade.stoploss_order_id: if self.edge: stoploss = self.edge.stoploss(pair=trade.pair) else: stoploss = self.strategy.stoploss stop_price = trade.open_rate * (1 + stoploss) # limit price should be less than stop price. # 0.98 is arbitrary here. limit_price = stop_price * 0.98 stoploss_order_id = self.exchange.stoploss_limit( pair=trade.pair, amount=trade.amount, stop_price=stop_price, rate=limit_price)['id'] trade.stoploss_order_id = str(stoploss_order_id) # Or the trade open and there is already a stoploss on exchange. # so we check if it is hit ... elif trade.stoploss_order_id: logger.debug('Handling stoploss on exchange %s ...', trade) order = self.exchange.get_order(trade.stoploss_order_id, trade.pair) if order['status'] == 'closed': trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value trade.update(order) result = True else: result = False return result def check_sell(self, trade: Trade, sell_rate: float, buy: bool, sell: bool) -> bool: if self.edge: stoploss = self.edge.stoploss(trade.pair) should_sell = self.strategy.should_sell(trade, sell_rate, datetime.utcnow(), buy, sell, force_stoploss=stoploss) else: should_sell = self.strategy.should_sell(trade, sell_rate, datetime.utcnow(), buy, sell) if should_sell.sell_flag: self.execute_sell(trade, sell_rate, should_sell.sell_type) logger.info('executed sell, reason: %s', should_sell.sell_type) return True return False def check_handle_timedout(self) -> None: """ Check if any orders are timed out and cancel if neccessary :param timeoutvalue: Number of minutes until order is considered timed out :return: None """ buy_timeout = self.config['unfilledtimeout']['buy'] sell_timeout = self.config['unfilledtimeout']['sell'] buy_timeoutthreashold = arrow.utcnow().shift( minutes=-buy_timeout).datetime sell_timeoutthreashold = arrow.utcnow().shift( minutes=-sell_timeout).datetime for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all(): try: # FIXME: Somehow the query above returns results # where the open_order_id is in fact None. # This is probably because the record got # updated via /forcesell in a different thread. if not trade.open_order_id: continue order = self.exchange.get_order(trade.open_order_id, trade.pair) except (RequestException, DependencyException): logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc()) continue ordertime = arrow.get(order['datetime']).datetime # Check if trade is still actually open if float(order['remaining']) == 0.0: self.wallets.update() continue # Check if trade is still actually open if order['status'] == 'open': if order['side'] == 'buy' and ordertime < buy_timeoutthreashold: self.handle_timedout_limit_buy(trade, order) self.wallets.update() elif order[ 'side'] == 'sell' and ordertime < sell_timeoutthreashold: self.handle_timedout_limit_sell(trade, order) self.wallets.update() # FIX: 20180110, why is cancel.order unconditionally here, whereas # it is conditionally called in the # handle_timedout_limit_sell()? def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool: """Buy timeout - cancel order :return: True if order was fully cancelled """ pair_s = trade.pair.replace('_', '/') self.exchange.cancel_order(trade.open_order_id, trade.pair) if order['remaining'] == order['amount']: # if trade is not partially completed, just delete the trade Trade.session.delete(trade) Trade.session.flush() logger.info('Buy order timeout for %s.', trade) self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'Unfilled buy order for {pair_s} cancelled due to timeout' }) return True # if trade is partially complete, edit the stake details for the trade # and close the order trade.amount = order['amount'] - order['remaining'] trade.stake_amount = trade.amount * trade.open_rate trade.open_order_id = None logger.info('Partial buy order timeout for %s.', trade) self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'Remaining buy order for {pair_s} cancelled due to timeout' }) return False # FIX: 20180110, should cancel_order() be cond. or unconditionally called? def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool: """ Sell timeout - cancel order and update trade :return: True if order was fully cancelled """ pair_s = trade.pair.replace('_', '/') if order['remaining'] == order['amount']: # if trade is not partially completed, just cancel the trade self.exchange.cancel_order(trade.open_order_id, trade.pair) trade.close_rate = None trade.close_profit = None trade.close_date = None trade.is_open = True trade.open_order_id = None self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'Unfilled sell order for {pair_s} cancelled due to timeout' }) logger.info('Sell order timeout for %s.', trade) return True # TODO: figure out how to handle partially complete sell orders return False def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> None: """ Executes a limit sell for the given trade and limit :param trade: Trade instance :param limit: limit rate for the sell order :param sellreason: Reason the sell was triggered :return: None """ sell_type = 'sell' if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS): sell_type = 'stoploss' # if stoploss is on exchange and we are on dry_run mode, # we consider the sell price stop price if self.config.get('dry_run', False) and sell_type == 'stoploss' \ and self.strategy.order_types['stoploss_on_exchange']: limit = trade.stop_loss # First cancelling stoploss on exchange ... if self.strategy.order_types.get( 'stoploss_on_exchange') and trade.stoploss_order_id: self.exchange.cancel_order(trade.stoploss_order_id, trade.pair) # Execute sell and update trade record order_id = self.exchange.sell( pair=str(trade.pair), ordertype=self.strategy.order_types[sell_type], amount=trade.amount, rate=limit, time_in_force=self.strategy.order_time_in_force['sell'])['id'] trade.open_order_id = order_id trade.close_rate_requested = limit trade.sell_reason = sell_reason.value profit_trade = trade.calc_profit(rate=limit) current_rate = self.exchange.get_ticker(trade.pair)['bid'] profit_percent = trade.calc_profit_percent(limit) pair_url = self.exchange.get_pair_detail_url(trade.pair) gain = "profit" if profit_percent > 0 else "loss" msg = { 'type': RPCMessageType.SELL_NOTIFICATION, 'exchange': trade.exchange.capitalize(), 'pair': trade.pair, 'gain': gain, 'market_url': pair_url, 'limit': limit, 'amount': trade.amount, 'open_rate': trade.open_rate, 'current_rate': current_rate, 'profit_amount': profit_trade, 'profit_percent': profit_percent, 'sell_reason': sell_reason.value } # For regular case, when the configuration exists if 'stake_currency' in self.config and 'fiat_display_currency' in self.config: stake_currency = self.config['stake_currency'] fiat_currency = self.config['fiat_display_currency'] msg.update({ 'stake_currency': stake_currency, 'fiat_currency': fiat_currency, }) # Send the message self.rpc.send_msg(msg) Trade.session.flush()
class FreqtradeBot(object): """ Freqtrade is the main class of the bot. This is from here the bot start its logic. """ def __init__(self, config: Dict[str, Any]) -> None: """ Init all variables and objects the bot needs to work :param config: configuration dict, you can use Configuration.get_config() to get the config dict. """ logger.info('Starting freqtrade %s', __version__) # Init bot state self.state = State.STOPPED # Init objects self.config = config self.strategy: IStrategy = StrategyResolver(self.config).strategy self.rpc: RPCManager = RPCManager(self) self.exchange = ExchangeResolver(self.config['exchange']['name'], self.config).exchange self.wallets = Wallets(self.config, self.exchange) self.dataprovider = DataProvider(self.config, self.exchange) # Attach Dataprovider to Strategy baseclass IStrategy.dp = self.dataprovider # Attach Wallets to Strategy baseclass IStrategy.wallets = self.wallets pairlistname = self.config.get('pairlist', {}).get('method', 'StaticPairList') self.pairlists = PairListResolver(pairlistname, self, self.config).pairlist # Initializing Edge only if enabled self.edge = Edge(self.config, self.exchange, self.strategy) if \ self.config.get('edge', {}).get('enabled', False) else None self.active_pair_whitelist: List[str] = self.config['exchange']['pair_whitelist'] persistence.init(self.config.get('db_url', None), clean_open_orders=self.config.get('dry_run', False)) # Set initial bot state from config initial_state = self.config.get('initial_state') self.state = State[initial_state.upper()] if initial_state else State.STOPPED def cleanup(self) -> None: """ Cleanup pending resources on an already stopped bot :return: None """ logger.info('Cleaning up modules ...') self.rpc.cleanup() persistence.cleanup() def startup(self) -> None: """ Called on startup and after reloading the bot - triggers notifications and performs startup tasks """ self.rpc.startup_messages(self.config, self.pairlists) if not self.edge: # Adjust stoploss if it was changed Trade.stoploss_reinitialization(self.strategy.stoploss) def process(self) -> bool: """ Queries the persistence layer for open trades and handles them, otherwise a new trade is created. :return: True if one or more trades has been created or closed, False otherwise """ state_changed = False # Check whether markets have to be reloaded self.exchange._reload_markets() # Refresh whitelist self.pairlists.refresh_pairlist() self.active_pair_whitelist = self.pairlists.whitelist # Calculating Edge positioning if self.edge: self.edge.calculate() self.active_pair_whitelist = self.edge.adjust(self.active_pair_whitelist) # Query trades from persistence layer trades = Trade.get_open_trades() # Extend active-pair whitelist with pairs from open trades # It ensures that tickers are downloaded for open trades self._extend_whitelist_with_trades(self.active_pair_whitelist, trades) # Refreshing candles self.dataprovider.refresh(self._create_pair_whitelist(self.active_pair_whitelist), self.strategy.informative_pairs()) # First process current opened trades for trade in trades: state_changed |= self.process_maybe_execute_sell(trade) # Then looking for buy opportunities if len(trades) < self.config['max_open_trades']: state_changed = self.process_maybe_execute_buy() if 'unfilledtimeout' in self.config: # Check and handle any timed out open orders self.check_handle_timedout() Trade.session.flush() return state_changed def _extend_whitelist_with_trades(self, whitelist: List[str], trades: List[Any]): """ Extend whitelist with pairs from open trades """ whitelist.extend([trade.pair for trade in trades if trade.pair not in whitelist]) def _create_pair_whitelist(self, pairs: List[str]) -> List[Tuple[str, str]]: """ Create pair-whitelist tuple with (pair, ticker_interval) """ return [(pair, self.config['ticker_interval']) for pair in pairs] def get_target_bid(self, pair: str, tick: Dict = None) -> float: """ Calculates bid target between current ask price and last price :return: float: Price """ config_bid_strategy = self.config.get('bid_strategy', {}) if 'use_order_book' in config_bid_strategy and\ config_bid_strategy.get('use_order_book', False): logger.info('Getting price from order book') order_book_top = config_bid_strategy.get('order_book_top', 1) order_book = self.exchange.get_order_book(pair, order_book_top) logger.debug('order_book %s', order_book) # top 1 = index 0 order_book_rate = order_book['bids'][order_book_top - 1][0] logger.info('...top %s order book buy rate %0.8f', order_book_top, order_book_rate) used_rate = order_book_rate else: if not tick: logger.info('Using Last Ask / Last Price') ticker = self.exchange.get_ticker(pair) else: ticker = tick if ticker['ask'] < ticker['last']: ticker_rate = ticker['ask'] else: balance = self.config['bid_strategy']['ask_last_balance'] ticker_rate = ticker['ask'] + balance * (ticker['last'] - ticker['ask']) used_rate = ticker_rate return used_rate def _get_trade_stake_amount(self, pair) -> Optional[float]: """ Check if stake amount can be fulfilled with the available balance for the stake currency :return: float: Stake Amount """ if self.edge: return self.edge.stake_amount( pair, self.wallets.get_free(self.config['stake_currency']), self.wallets.get_total(self.config['stake_currency']), Trade.total_open_trades_stakes() ) else: stake_amount = self.config['stake_amount'] available_amount = self.wallets.get_free(self.config['stake_currency']) if stake_amount == constants.UNLIMITED_STAKE_AMOUNT: open_trades = len(Trade.get_open_trades()) if open_trades >= self.config['max_open_trades']: logger.warning('Can\'t open a new trade: max number of trades is reached') return None return available_amount / (self.config['max_open_trades'] - open_trades) # Check if stake_amount is fulfilled if available_amount < stake_amount: raise DependencyException( f"Available balance({available_amount} {self.config['stake_currency']}) is " f"lower than stake amount({stake_amount} {self.config['stake_currency']})" ) return stake_amount def _get_min_pair_stake_amount(self, pair: str, price: float) -> Optional[float]: try: market = self.exchange.markets[pair] except KeyError: raise ValueError(f"Can't get market information for symbol {pair}") if 'limits' not in market: return None min_stake_amounts = [] limits = market['limits'] if ('cost' in limits and 'min' in limits['cost'] and limits['cost']['min'] is not None): min_stake_amounts.append(limits['cost']['min']) if ('amount' in limits and 'min' in limits['amount'] and limits['amount']['min'] is not None): min_stake_amounts.append(limits['amount']['min'] * price) if not min_stake_amounts: return None # reserve some percent defined in config (5% default) + stoploss amount_reserve_percent = 1.0 - self.config.get('amount_reserve_percent', constants.DEFAULT_AMOUNT_RESERVE_PERCENT) if self.strategy.stoploss is not None: amount_reserve_percent += self.strategy.stoploss # it should not be more than 50% amount_reserve_percent = max(amount_reserve_percent, 0.5) return min(min_stake_amounts) / amount_reserve_percent def create_trade(self) -> bool: """ Checks the implemented trading indicator(s) for a randomly picked pair, if one pair triggers the buy_signal a new trade record gets created :return: True if a trade object has been created and persisted, False otherwise """ interval = self.strategy.ticker_interval whitelist = copy.deepcopy(self.active_pair_whitelist) if not whitelist: logger.warning("Whitelist is empty.") return False # Remove currently opened and latest pairs from whitelist for trade in Trade.get_open_trades(): if trade.pair in whitelist: whitelist.remove(trade.pair) logger.debug('Ignoring %s in pair whitelist', trade.pair) if not whitelist: logger.info("No currency pair in whitelist, but checking to sell open trades.") return False # running get_signal on historical data fetched for _pair in whitelist: (buy, sell) = self.strategy.get_signal( _pair, interval, self.dataprovider.ohlcv(_pair, self.strategy.ticker_interval)) if buy and not sell: stake_amount = self._get_trade_stake_amount(_pair) if not stake_amount: return False logger.info(f"Buy signal found: about create a new trade with stake_amount: " f"{stake_amount} ...") bidstrat_check_depth_of_market = self.config.get('bid_strategy', {}).\ get('check_depth_of_market', {}) if (bidstrat_check_depth_of_market.get('enabled', False)) and\ (bidstrat_check_depth_of_market.get('bids_to_ask_delta', 0) > 0): if self._check_depth_of_market_buy(_pair, bidstrat_check_depth_of_market): return self.execute_buy(_pair, stake_amount) else: return False return self.execute_buy(_pair, stake_amount) return False def _check_depth_of_market_buy(self, pair: str, conf: Dict) -> bool: """ Checks depth of market before executing a buy """ conf_bids_to_ask_delta = conf.get('bids_to_ask_delta', 0) logger.info('checking depth of market for %s', pair) order_book = self.exchange.get_order_book(pair, 1000) order_book_data_frame = order_book_to_dataframe(order_book['bids'], order_book['asks']) order_book_bids = order_book_data_frame['b_size'].sum() order_book_asks = order_book_data_frame['a_size'].sum() bids_ask_delta = order_book_bids / order_book_asks logger.info('bids: %s, asks: %s, delta: %s', order_book_bids, order_book_asks, bids_ask_delta) if bids_ask_delta >= conf_bids_to_ask_delta: return True return False def execute_buy(self, pair: str, stake_amount: float, price: Optional[float] = None) -> bool: """ Executes a limit buy for the given pair :param pair: pair for which we want to create a LIMIT_BUY :return: None """ pair_s = pair.replace('_', '/') stake_currency = self.config['stake_currency'] fiat_currency = self.config.get('fiat_display_currency', None) time_in_force = self.strategy.order_time_in_force['buy'] if price: buy_limit_requested = price else: # Calculate amount buy_limit_requested = self.get_target_bid(pair) min_stake_amount = self._get_min_pair_stake_amount(pair_s, buy_limit_requested) if min_stake_amount is not None and min_stake_amount > stake_amount: logger.warning( f'Can\'t open a new trade for {pair_s}: stake amount ' f'is too small ({stake_amount} < {min_stake_amount})' ) return False amount = stake_amount / buy_limit_requested order_type = self.strategy.order_types['buy'] order = self.exchange.buy(pair=pair, ordertype=order_type, amount=amount, rate=buy_limit_requested, time_in_force=time_in_force) order_id = order['id'] order_status = order.get('status', None) # we assume the order is executed at the price requested buy_limit_filled_price = buy_limit_requested if order_status == 'expired' or order_status == 'rejected': order_tif = self.strategy.order_time_in_force['buy'] # return false if the order is not filled if float(order['filled']) == 0: logger.warning('Buy %s order with time in force %s for %s is %s by %s.' ' zero amount is fulfilled.', order_tif, order_type, pair_s, order_status, self.exchange.name) return False else: # the order is partially fulfilled # in case of IOC orders we can check immediately # if the order is fulfilled fully or partially logger.warning('Buy %s order with time in force %s for %s is %s by %s.' ' %s amount fulfilled out of %s (%s remaining which is canceled).', order_tif, order_type, pair_s, order_status, self.exchange.name, order['filled'], order['amount'], order['remaining'] ) stake_amount = order['cost'] amount = order['amount'] buy_limit_filled_price = order['price'] order_id = None # in case of FOK the order may be filled immediately and fully elif order_status == 'closed': stake_amount = order['cost'] amount = order['amount'] buy_limit_filled_price = order['price'] self.rpc.send_msg({ 'type': RPCMessageType.BUY_NOTIFICATION, 'exchange': self.exchange.name.capitalize(), 'pair': pair_s, 'limit': buy_limit_filled_price, 'order_type': order_type, 'stake_amount': stake_amount, 'stake_currency': stake_currency, 'fiat_currency': fiat_currency }) # Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker') trade = Trade( pair=pair, stake_amount=stake_amount, amount=amount, fee_open=fee, fee_close=fee, open_rate=buy_limit_filled_price, open_rate_requested=buy_limit_requested, open_date=datetime.utcnow(), exchange=self.exchange.id, open_order_id=order_id, strategy=self.strategy.get_strategy_name(), ticker_interval=timeframe_to_minutes(self.config['ticker_interval']) ) # Update fees if order is closed if order_status == 'closed': self.update_trade_state(trade, order) Trade.session.add(trade) Trade.session.flush() # Updating wallets self.wallets.update() return True def process_maybe_execute_buy(self) -> bool: """ Tries to execute a buy trade in a safe way :return: True if executed """ try: # Create entity and execute trade if self.create_trade(): return True logger.info('Found no buy signals for whitelisted currencies. Trying again..') return False except DependencyException as exception: logger.warning('Unable to create trade: %s', exception) return False def process_maybe_execute_sell(self, trade: Trade) -> bool: """ Tries to execute a sell trade :return: True if executed """ try: self.update_trade_state(trade) if self.strategy.order_types.get('stoploss_on_exchange') and trade.is_open: result = self.handle_stoploss_on_exchange(trade) if result: self.wallets.update() return result if trade.is_open and trade.open_order_id is None: # Check if we can sell our current pair result = self.handle_trade(trade) # Updating wallets if any trade occured if result: self.wallets.update() return result except DependencyException as exception: logger.warning('Unable to sell trade: %s', exception) return False def get_real_amount(self, trade: Trade, order: Dict) -> float: """ Get real amount for the trade Necessary for exchanges which charge fees in base currency (e.g. binance) """ order_amount = order['amount'] # Only run for closed orders if trade.fee_open == 0 or order['status'] == 'open': return order_amount # use fee from order-dict if possible if 'fee' in order and order['fee'] and (order['fee'].keys() >= {'currency', 'cost'}): if trade.pair.startswith(order['fee']['currency']): new_amount = order_amount - order['fee']['cost'] logger.info("Applying fee on amount for %s (from %s to %s) from Order", trade, order['amount'], new_amount) return new_amount # Fallback to Trades trades = self.exchange.get_trades_for_order(trade.open_order_id, trade.pair, trade.open_date) if len(trades) == 0: logger.info("Applying fee on amount for %s failed: myTrade-Dict empty found", trade) return order_amount amount = 0 fee_abs = 0 for exectrade in trades: amount += exectrade['amount'] if "fee" in exectrade and (exectrade['fee'].keys() >= {'currency', 'cost'}): # only applies if fee is in quote currency! if trade.pair.startswith(exectrade['fee']['currency']): fee_abs += exectrade['fee']['cost'] if amount != order_amount: logger.warning(f"Amount {amount} does not match amount {trade.amount}") raise OperationalException("Half bought? Amounts don't match") real_amount = amount - fee_abs if fee_abs != 0: logger.info(f"Applying fee on amount for {trade} " f"(from {order_amount} to {real_amount}) from Trades") return real_amount def update_trade_state(self, trade, action_order: dict = None): """ Checks trades with open orders and updates the amount if necessary """ # Get order details for actual price per unit if trade.open_order_id: # Update trade with order values logger.info('Found open order for %s', trade) order = action_order or self.exchange.get_order(trade.open_order_id, trade.pair) # Try update amount (binance-fix) try: new_amount = self.get_real_amount(trade, order) if order['amount'] != new_amount: order['amount'] = new_amount # Fee was applied, so set to 0 trade.fee_open = 0 except OperationalException as exception: logger.warning("Could not update trade amount: %s", exception) trade.update(order) # Updating wallets when order is closed if not trade.is_open: self.wallets.update() def get_sell_rate(self, pair: str, refresh: bool) -> float: """ Get sell rate - either using get-ticker bid or first bid based on orderbook The orderbook portion is only used for rpc messaging, which would otherwise fail for BitMex (has no bid/ask in get_ticker) or remain static in any other case since it's not updating. :return: Bid rate """ config_ask_strategy = self.config.get('ask_strategy', {}) if config_ask_strategy.get('use_order_book', False): logger.debug('Using order book to get sell rate') order_book = self.exchange.get_order_book(pair, 1) rate = order_book['bids'][0][0] else: rate = self.exchange.get_ticker(pair, refresh)['bid'] return rate def handle_trade(self, trade: Trade) -> bool: """ Sells the current pair if the threshold is reached and updates the trade record. :return: True if trade has been sold, False otherwise """ if not trade.is_open: raise ValueError(f'Attempt to handle closed trade: {trade}') logger.debug('Handling %s ...', trade) (buy, sell) = (False, False) experimental = self.config.get('experimental', {}) if experimental.get('use_sell_signal') or experimental.get('ignore_roi_if_buy_signal'): (buy, sell) = self.strategy.get_signal( trade.pair, self.strategy.ticker_interval, self.dataprovider.ohlcv(trade.pair, self.strategy.ticker_interval)) config_ask_strategy = self.config.get('ask_strategy', {}) if config_ask_strategy.get('use_order_book', False): logger.info('Using order book for selling...') # logger.debug('Order book %s',orderBook) order_book_min = config_ask_strategy.get('order_book_min', 1) order_book_max = config_ask_strategy.get('order_book_max', 1) order_book = self.exchange.get_order_book(trade.pair, order_book_max) for i in range(order_book_min, order_book_max + 1): order_book_rate = order_book['asks'][i - 1][0] logger.info(' order book asks top %s: %0.8f', i, order_book_rate) sell_rate = order_book_rate if self.check_sell(trade, sell_rate, buy, sell): return True else: logger.debug('checking sell') sell_rate = self.get_sell_rate(trade.pair, True) if self.check_sell(trade, sell_rate, buy, sell): return True logger.debug('Found no sell signal for %s.', trade) return False def handle_stoploss_on_exchange(self, trade: Trade) -> bool: """ Check if trade is fulfilled in which case the stoploss on exchange should be added immediately if stoploss on exchange is enabled. """ logger.debug('Handling stoploss on exchange %s ...', trade) stoploss_order = None try: # First we check if there is already a stoploss on exchange stoploss_order = self.exchange.get_order(trade.stoploss_order_id, trade.pair) \ if trade.stoploss_order_id else None except InvalidOrderException as exception: logger.warning('Unable to fetch stoploss order: %s', exception) # If trade open order id does not exist: buy order is fulfilled buy_order_fulfilled = not trade.open_order_id # Limit price threshold: As limit price should always be below price limit_price_pct = 0.99 # If buy order is fulfilled but there is no stoploss, we add a stoploss on exchange if (buy_order_fulfilled and not stoploss_order): if self.edge: stoploss = self.edge.stoploss(pair=trade.pair) else: stoploss = self.strategy.stoploss stop_price = trade.open_rate * (1 + stoploss) # limit price should be less than stop price. limit_price = stop_price * limit_price_pct try: stoploss_order_id = self.exchange.stoploss_limit( pair=trade.pair, amount=trade.amount, stop_price=stop_price, rate=limit_price )['id'] trade.stoploss_order_id = str(stoploss_order_id) trade.stoploss_last_update = datetime.now() return False except DependencyException as exception: logger.warning('Unable to place a stoploss order on exchange: %s', exception) # If stoploss order is canceled for some reason we add it if stoploss_order and stoploss_order['status'] == 'canceled': try: stoploss_order_id = self.exchange.stoploss_limit( pair=trade.pair, amount=trade.amount, stop_price=trade.stop_loss, rate=trade.stop_loss * limit_price_pct )['id'] trade.stoploss_order_id = str(stoploss_order_id) return False except DependencyException as exception: logger.warning('Stoploss order was cancelled, ' 'but unable to recreate one: %s', exception) # We check if stoploss order is fulfilled if stoploss_order and stoploss_order['status'] == 'closed': trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value trade.update(stoploss_order) self.notify_sell(trade) return True # Finally we check if stoploss on exchange should be moved up because of trailing. if stoploss_order and self.config.get('trailing_stop', False): # if trailing stoploss is enabled we check if stoploss value has changed # in which case we cancel stoploss order and put another one with new # value immediately self.handle_trailing_stoploss_on_exchange(trade, stoploss_order) return False def handle_trailing_stoploss_on_exchange(self, trade: Trade, order): """ Check to see if stoploss on exchange should be updated in case of trailing stoploss on exchange :param Trade: Corresponding Trade :param order: Current on exchange stoploss order :return: None """ if trade.stop_loss > float(order['info']['stopPrice']): # we check if the update is neccesary update_beat = self.strategy.order_types.get('stoploss_on_exchange_interval', 60) if (datetime.utcnow() - trade.stoploss_last_update).total_seconds() > update_beat: # cancelling the current stoploss on exchange first logger.info('Trailing stoploss: cancelling current stoploss on exchange (id:{%s})' 'in order to add another one ...', order['id']) try: self.exchange.cancel_order(order['id'], trade.pair) except InvalidOrderException: logger.exception(f"Could not cancel stoploss order {order['id']} " f"for pair {trade.pair}") try: # creating the new one stoploss_order_id = self.exchange.stoploss_limit( pair=trade.pair, amount=trade.amount, stop_price=trade.stop_loss, rate=trade.stop_loss * 0.99 )['id'] trade.stoploss_order_id = str(stoploss_order_id) except DependencyException: logger.exception(f"Could create trailing stoploss order " f"for pair {trade.pair}.") def check_sell(self, trade: Trade, sell_rate: float, buy: bool, sell: bool) -> bool: if self.edge: stoploss = self.edge.stoploss(trade.pair) should_sell = self.strategy.should_sell( trade, sell_rate, datetime.utcnow(), buy, sell, force_stoploss=stoploss) else: should_sell = self.strategy.should_sell(trade, sell_rate, datetime.utcnow(), buy, sell) if should_sell.sell_flag: self.execute_sell(trade, sell_rate, should_sell.sell_type) logger.info('executed sell, reason: %s', should_sell.sell_type) return True return False def check_handle_timedout(self) -> None: """ Check if any orders are timed out and cancel if neccessary :param timeoutvalue: Number of minutes until order is considered timed out :return: None """ buy_timeout = self.config['unfilledtimeout']['buy'] sell_timeout = self.config['unfilledtimeout']['sell'] buy_timeoutthreashold = arrow.utcnow().shift(minutes=-buy_timeout).datetime sell_timeoutthreashold = arrow.utcnow().shift(minutes=-sell_timeout).datetime for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all(): try: # FIXME: Somehow the query above returns results # where the open_order_id is in fact None. # This is probably because the record got # updated via /forcesell in a different thread. if not trade.open_order_id: continue order = self.exchange.get_order(trade.open_order_id, trade.pair) except (RequestException, DependencyException): logger.info( 'Cannot query order for %s due to %s', trade, traceback.format_exc()) continue ordertime = arrow.get(order['datetime']).datetime # Check if trade is still actually open if float(order['remaining']) == 0.0: self.wallets.update() continue # Handle cancelled on exchange if order['status'] == 'canceled': if order['side'] == 'buy': self.handle_buy_order_full_cancel(trade, "canceled on Exchange") elif order['side'] == 'sell': self.handle_timedout_limit_sell(trade, order) self.wallets.update() # Check if order is still actually open elif order['status'] == 'open': if order['side'] == 'buy' and ordertime < buy_timeoutthreashold: self.handle_timedout_limit_buy(trade, order) self.wallets.update() elif order['side'] == 'sell' and ordertime < sell_timeoutthreashold: self.handle_timedout_limit_sell(trade, order) self.wallets.update() def handle_buy_order_full_cancel(self, trade: Trade, reason: str) -> None: """Close trade in database and send message""" Trade.session.delete(trade) Trade.session.flush() logger.info('Buy order %s for %s.', reason, trade) self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'Unfilled buy order for {trade.pair} {reason}' }) def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool: """Buy timeout - cancel order :return: True if order was fully cancelled """ self.exchange.cancel_order(trade.open_order_id, trade.pair) if order['remaining'] == order['amount']: # if trade is not partially completed, just delete the trade self.handle_buy_order_full_cancel(trade, "cancelled due to timeout") return True # if trade is partially complete, edit the stake details for the trade # and close the order trade.amount = order['amount'] - order['remaining'] trade.stake_amount = trade.amount * trade.open_rate trade.open_order_id = None logger.info('Partial buy order timeout for %s.', trade) self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'Remaining buy order for {trade.pair} cancelled due to timeout' }) return False def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool: """ Sell timeout - cancel order and update trade :return: True if order was fully cancelled """ if order['remaining'] == order['amount']: # if trade is not partially completed, just cancel the trade if order["status"] != "canceled": reason = "due to timeout" self.exchange.cancel_order(trade.open_order_id, trade.pair) logger.info('Sell order timeout for %s.', trade) else: reason = "on exchange" logger.info('Sell order canceled on exchange for %s.', trade) trade.close_rate = None trade.close_profit = None trade.close_date = None trade.is_open = True trade.open_order_id = None self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'Unfilled sell order for {trade.pair} cancelled {reason}' }) return True # TODO: figure out how to handle partially complete sell orders return False def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> None: """ Executes a limit sell for the given trade and limit :param trade: Trade instance :param limit: limit rate for the sell order :param sellreason: Reason the sell was triggered :return: None """ sell_type = 'sell' if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS): sell_type = 'stoploss' # if stoploss is on exchange and we are on dry_run mode, # we consider the sell price stop price if self.config.get('dry_run', False) and sell_type == 'stoploss' \ and self.strategy.order_types['stoploss_on_exchange']: limit = trade.stop_loss # First cancelling stoploss on exchange ... if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id: try: self.exchange.cancel_order(trade.stoploss_order_id, trade.pair) except InvalidOrderException: logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}") # Execute sell and update trade record order_id = self.exchange.sell(pair=str(trade.pair), ordertype=self.strategy.order_types[sell_type], amount=trade.amount, rate=limit, time_in_force=self.strategy.order_time_in_force['sell'] )['id'] trade.open_order_id = order_id trade.close_rate_requested = limit trade.sell_reason = sell_reason.value Trade.session.flush() self.notify_sell(trade) def notify_sell(self, trade: Trade): """ Sends rpc notification when a sell occured. """ profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested profit_trade = trade.calc_profit(rate=profit_rate) # Use cached ticker here - it was updated seconds ago. current_rate = self.get_sell_rate(trade.pair, False) profit_percent = trade.calc_profit_percent(profit_rate) gain = "profit" if profit_percent > 0 else "loss" msg = { 'type': RPCMessageType.SELL_NOTIFICATION, 'exchange': trade.exchange.capitalize(), 'pair': trade.pair, 'gain': gain, 'limit': trade.close_rate_requested, 'order_type': self.strategy.order_types['sell'], 'amount': trade.amount, 'open_rate': trade.open_rate, 'current_rate': current_rate, 'profit_amount': profit_trade, 'profit_percent': profit_percent, 'sell_reason': trade.sell_reason } # For regular case, when the configuration exists if 'stake_currency' in self.config and 'fiat_display_currency' in self.config: stake_currency = self.config['stake_currency'] fiat_currency = self.config['fiat_display_currency'] msg.update({ 'stake_currency': stake_currency, 'fiat_currency': fiat_currency, }) # Send the message self.rpc.send_msg(msg)
class FreqtradeBot: """ Freqtrade is the main class of the bot. This is from here the bot start its logic. """ def __init__(self, config: Dict[str, Any]) -> None: """ Init all variables and objects the bot needs to work :param config: configuration dict, you can use Configuration.get_config() to get the config dict. """ logger.info('Starting freqtrade %s', __version__) # Init bot state self.state = State.STOPPED # Init objects self.config = config self._heartbeat_msg = 0 self.heartbeat_interval = self.config.get('internals', {}).get( 'heartbeat_interval', 60) self.strategy: IStrategy = StrategyResolver.load_strategy(self.config) # Check config consistency here since strategies can set certain options validate_config_consistency(config) self.exchange = ExchangeResolver.load_exchange( self.config['exchange']['name'], self.config) persistence.init(self.config.get('db_url', None), clean_open_orders=self.config['dry_run']) self.wallets = Wallets(self.config, self.exchange) self.dataprovider = DataProvider(self.config, self.exchange) # Attach Dataprovider to Strategy baseclass IStrategy.dp = self.dataprovider # Attach Wallets to Strategy baseclass IStrategy.wallets = self.wallets self.pairlists = PairListManager(self.exchange, self.config) # Initializing Edge only if enabled self.edge = Edge(self.config, self.exchange, self.strategy) if \ self.config.get('edge', {}).get('enabled', False) else None self.active_pair_whitelist = self._refresh_whitelist() # Set initial bot state from config initial_state = self.config.get('initial_state') self.state = State[ initial_state.upper()] if initial_state else State.STOPPED # RPC runs in separate threads, can start handling external commands just after # initialization, even before Freqtradebot has a chance to start its throttling, # so anything in the Freqtradebot instance should be ready (initialized), including # the initial state of the bot. # Keep this at the end of this initialization method. self.rpc: RPCManager = RPCManager(self) # Protect sell-logic from forcesell and viceversa self._sell_lock = Lock() def notify_status(self, msg: str) -> None: """ Public method for users of this class (worker, etc.) to send notifications via RPC about changes in the bot status. """ self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': msg }) def cleanup(self) -> None: """ Cleanup pending resources on an already stopped bot :return: None """ logger.info('Cleaning up modules ...') self.rpc.cleanup() persistence.cleanup() def startup(self) -> None: """ Called on startup and after reloading the bot - triggers notifications and performs startup tasks """ self.rpc.startup_messages(self.config, self.pairlists) if not self.edge: # Adjust stoploss if it was changed Trade.stoploss_reinitialization(self.strategy.stoploss) def process(self) -> None: """ Queries the persistence layer for open trades and handles them, otherwise a new trade is created. :return: True if one or more trades has been created or closed, False otherwise """ # Check whether markets have to be reloaded self.exchange._reload_markets() # Query trades from persistence layer trades = Trade.get_open_trades() self.active_pair_whitelist = self._refresh_whitelist(trades) # Refreshing candles self.dataprovider.refresh( self._create_pair_whitelist(self.active_pair_whitelist), self.strategy.informative_pairs()) # Protect from collisions with forcesell. # Without this, freqtrade my try to recreate stoploss_on_exchange orders # while selling is in process, since telegram messages arrive in an different thread. with self._sell_lock: # First process current opened trades (positions) self.exit_positions(trades) # Then looking for buy opportunities if self.get_free_open_trades(): self.enter_positions() # Check and handle any timed out open orders self.check_handle_timedout() Trade.session.flush() if (self.heartbeat_interval and (arrow.utcnow().timestamp - self._heartbeat_msg > self.heartbeat_interval)): logger.info(f"Bot heartbeat. PID={getpid()}") self._heartbeat_msg = arrow.utcnow().timestamp def _refresh_whitelist(self, trades: List[Trade] = []) -> List[str]: """ Refresh whitelist from pairlist or edge and extend it with trades. """ # Refresh whitelist self.pairlists.refresh_pairlist() _whitelist = self.pairlists.whitelist # Calculating Edge positioning if self.edge: self.edge.calculate() _whitelist = self.edge.adjust(_whitelist) if trades: # Extend active-pair whitelist with pairs from open trades # It ensures that tickers are downloaded for open trades _whitelist.extend([ trade.pair for trade in trades if trade.pair not in _whitelist ]) return _whitelist def _create_pair_whitelist(self, pairs: List[str]) -> List[Tuple[str, str]]: """ Create pair-whitelist tuple with (pair, ticker_interval) """ return [(pair, self.config['ticker_interval']) for pair in pairs] def get_free_open_trades(self): """ Return the number of free open trades slots or 0 if max number of open trades reached """ open_trades = len(Trade.get_open_trades()) return max(0, self.config['max_open_trades'] - open_trades) # # BUY / enter positions / open trades logic and methods # def enter_positions(self) -> int: """ Tries to execute buy orders for new trades (positions) """ trades_created = 0 whitelist = copy.deepcopy(self.active_pair_whitelist) if not whitelist: logger.info("Active pair whitelist is empty.") else: # Remove pairs for currently opened trades from the whitelist for trade in Trade.get_open_trades(): if trade.pair in whitelist: whitelist.remove(trade.pair) logger.debug('Ignoring %s in pair whitelist', trade.pair) if not whitelist: logger.info("No currency pair in active pair whitelist, " "but checking to sell open trades.") else: # Create entity and execute trade for each pair from whitelist for pair in whitelist: try: trades_created += self.create_trade(pair) except DependencyException as exception: logger.warning('Unable to create trade for %s: %s', pair, exception) if not trades_created: logger.debug( "Found no buy signals for whitelisted currencies. " "Trying again...") return trades_created def get_buy_rate(self, pair: str, tick: Dict = None) -> float: """ Calculates bid target between current ask price and last price :return: float: Price """ config_bid_strategy = self.config.get('bid_strategy', {}) if 'use_order_book' in config_bid_strategy and\ config_bid_strategy.get('use_order_book', False): logger.info('Getting price from order book') order_book_top = config_bid_strategy.get('order_book_top', 1) order_book = self.exchange.get_order_book(pair, order_book_top) logger.debug('order_book %s', order_book) # top 1 = index 0 order_book_rate = order_book['bids'][order_book_top - 1][0] logger.info('...top %s order book buy rate %0.8f', order_book_top, order_book_rate) used_rate = order_book_rate else: if not tick: logger.info('Using Last Ask / Last Price') ticker = self.exchange.fetch_ticker(pair) else: ticker = tick if ticker['ask'] < ticker['last']: ticker_rate = ticker['ask'] else: balance = self.config['bid_strategy']['ask_last_balance'] ticker_rate = ticker['ask'] + balance * (ticker['last'] - ticker['ask']) used_rate = ticker_rate return used_rate def get_trade_stake_amount(self, pair) -> float: """ Calculate stake amount for the trade :return: float: Stake amount :raise: DependencyException if the available stake amount is too low """ stake_amount: float # Ensure wallets are uptodate. self.wallets.update() if self.edge: stake_amount = self.edge.stake_amount( pair, self.wallets.get_free(self.config['stake_currency']), self.wallets.get_total(self.config['stake_currency']), Trade.total_open_trades_stakes()) else: stake_amount = self.config['stake_amount'] if stake_amount == constants.UNLIMITED_STAKE_AMOUNT: stake_amount = self._calculate_unlimited_stake_amount() return self._check_available_stake_amount(stake_amount) def _get_available_stake_amount(self) -> float: """ Return the total currently available balance in stake currency, respecting tradable_balance_ratio. Calculated as <open_trade stakes> + free amount ) * tradable_balance_ratio - <open_trade stakes> """ val_tied_up = Trade.total_open_trades_stakes() # Ensure <tradable_balance_ratio>% is used from the overall balance # Otherwise we'd risk lowering stakes with each open trade. # (tied up + current free) * ratio) - tied up available_amount = ( (val_tied_up + self.wallets.get_free(self.config['stake_currency']) ) * self.config['tradable_balance_ratio']) - val_tied_up return available_amount def _calculate_unlimited_stake_amount(self) -> float: """ Calculate stake amount for "unlimited" stake amount :return: 0 if max number of trades reached, else stake_amount to use. """ free_open_trades = self.get_free_open_trades() if not free_open_trades: return 0 available_amount = self._get_available_stake_amount() return available_amount / free_open_trades def _check_available_stake_amount(self, stake_amount: float) -> float: """ Check if stake amount can be fulfilled with the available balance for the stake currency :return: float: Stake amount """ available_amount = self._get_available_stake_amount() if self.config['amend_last_stake_amount']: # Remaining amount needs to be at least stake_amount * last_stake_amount_min_ratio # Otherwise the remaining amount is too low to trade. if available_amount > (stake_amount * self.config['last_stake_amount_min_ratio']): stake_amount = min(stake_amount, available_amount) else: stake_amount = 0 if available_amount < stake_amount: raise DependencyException( f"Available balance ({available_amount} {self.config['stake_currency']}) is " f"lower than stake amount ({stake_amount} {self.config['stake_currency']})" ) return stake_amount def _get_min_pair_stake_amount(self, pair: str, price: float) -> Optional[float]: try: market = self.exchange.markets[pair] except KeyError: raise ValueError(f"Can't get market information for symbol {pair}") if 'limits' not in market: return None min_stake_amounts = [] limits = market['limits'] if ('cost' in limits and 'min' in limits['cost'] and limits['cost']['min'] is not None): min_stake_amounts.append(limits['cost']['min']) if ('amount' in limits and 'min' in limits['amount'] and limits['amount']['min'] is not None): min_stake_amounts.append(limits['amount']['min'] * price) if not min_stake_amounts: return None # reserve some percent defined in config (5% default) + stoploss amount_reserve_percent = 1.0 - self.config.get( 'amount_reserve_percent', constants.DEFAULT_AMOUNT_RESERVE_PERCENT) if self.strategy.stoploss is not None: amount_reserve_percent += self.strategy.stoploss # it should not be more than 50% amount_reserve_percent = max(amount_reserve_percent, 0.5) # The value returned should satisfy both limits: for amount (base currency) and # for cost (quote, stake currency), so max() is used here. # See also #2575 at github. return max(min_stake_amounts) / amount_reserve_percent def create_trade(self, pair: str) -> bool: """ Check the implemented trading strategy for buy signals. If the pair triggers the buy signal a new trade record gets created and the buy-order opening the trade gets issued towards the exchange. :return: True if a trade has been created. """ logger.debug(f"create_trade for pair {pair}") if self.strategy.is_pair_locked(pair): logger.info(f"Pair {pair} is currently locked.") return False # running get_signal on historical data fetched (buy, sell) = self.strategy.get_signal( pair, self.strategy.ticker_interval, self.dataprovider.ohlcv(pair, self.strategy.ticker_interval)) if buy and not sell: if not self.get_free_open_trades(): logger.debug( "Can't open a new trade: max number of trades is reached.") return False stake_amount = self.get_trade_stake_amount(pair) if not stake_amount: logger.debug( "Stake amount is 0, ignoring possible trade for {pair}.") return False logger.info( f"Buy signal found: about create a new trade with stake_amount: " f"{stake_amount} ...") bid_check_dom = self.config.get('bid_strategy', {}).get('check_depth_of_market', {}) if ((bid_check_dom.get('enabled', False)) and (bid_check_dom.get('bids_to_ask_delta', 0) > 0)): if self._check_depth_of_market_buy(pair, bid_check_dom): return self.execute_buy(pair, stake_amount) else: return False return self.execute_buy(pair, stake_amount) else: return False def _check_depth_of_market_buy(self, pair: str, conf: Dict) -> bool: """ Checks depth of market before executing a buy """ conf_bids_to_ask_delta = conf.get('bids_to_ask_delta', 0) logger.info('checking depth of market for %s', pair) order_book = self.exchange.get_order_book(pair, 1000) order_book_data_frame = order_book_to_dataframe( order_book['bids'], order_book['asks']) order_book_bids = order_book_data_frame['b_size'].sum() order_book_asks = order_book_data_frame['a_size'].sum() bids_ask_delta = order_book_bids / order_book_asks logger.info('bids: %s, asks: %s, delta: %s', order_book_bids, order_book_asks, bids_ask_delta) if bids_ask_delta >= conf_bids_to_ask_delta: return True return False def execute_buy(self, pair: str, stake_amount: float, price: Optional[float] = None) -> bool: """ Executes a limit buy for the given pair :param pair: pair for which we want to create a LIMIT_BUY :return: None """ time_in_force = self.strategy.order_time_in_force['buy'] if price: buy_limit_requested = price else: # Calculate price buy_limit_requested = self.get_buy_rate(pair) min_stake_amount = self._get_min_pair_stake_amount( pair, buy_limit_requested) if min_stake_amount is not None and min_stake_amount > stake_amount: logger.warning( f"Can't open a new trade for {pair}: stake amount " f"is too small ({stake_amount} < {min_stake_amount})") return False amount = stake_amount / buy_limit_requested order_type = self.strategy.order_types['buy'] order = self.exchange.buy(pair=pair, ordertype=order_type, amount=amount, rate=buy_limit_requested, time_in_force=time_in_force) order_id = order['id'] order_status = order.get('status', None) # we assume the order is executed at the price requested buy_limit_filled_price = buy_limit_requested if order_status == 'expired' or order_status == 'rejected': order_tif = self.strategy.order_time_in_force['buy'] # return false if the order is not filled if float(order['filled']) == 0: logger.warning( 'Buy %s order with time in force %s for %s is %s by %s.' ' zero amount is fulfilled.', order_tif, order_type, pair, order_status, self.exchange.name) return False else: # the order is partially fulfilled # in case of IOC orders we can check immediately # if the order is fulfilled fully or partially logger.warning( 'Buy %s order with time in force %s for %s is %s by %s.' ' %s amount fulfilled out of %s (%s remaining which is canceled).', order_tif, order_type, pair, order_status, self.exchange.name, order['filled'], order['amount'], order['remaining']) stake_amount = order['cost'] amount = order['amount'] buy_limit_filled_price = order['price'] order_id = None # in case of FOK the order may be filled immediately and fully elif order_status == 'closed': stake_amount = order['cost'] amount = order['amount'] buy_limit_filled_price = order['price'] # Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker') trade = Trade(pair=pair, stake_amount=stake_amount, amount=amount, fee_open=fee, fee_close=fee, open_rate=buy_limit_filled_price, open_rate_requested=buy_limit_requested, open_date=datetime.utcnow(), exchange=self.exchange.id, open_order_id=order_id, strategy=self.strategy.get_strategy_name(), ticker_interval=timeframe_to_minutes( self.config['ticker_interval'])) self._notify_buy(trade, order_type) # Update fees if order is closed if order_status == 'closed': self.update_trade_state(trade, order) Trade.session.add(trade) Trade.session.flush() # Updating wallets self.wallets.update() return True def _notify_buy(self, trade: Trade, order_type: str): """ Sends rpc notification when a buy occured. """ msg = { 'type': RPCMessageType.BUY_NOTIFICATION, 'exchange': self.exchange.name.capitalize(), 'pair': trade.pair, 'limit': trade.open_rate, 'order_type': order_type, 'stake_amount': trade.stake_amount, 'stake_currency': self.config['stake_currency'], 'fiat_currency': self.config.get('fiat_display_currency', None), } # Send the message self.rpc.send_msg(msg) # # SELL / exit positions / close trades logic and methods # def exit_positions(self, trades: List[Any]) -> int: """ Tries to execute sell orders for open trades (positions) """ trades_closed = 0 for trade in trades: try: self.update_trade_state(trade) if (self.strategy.order_types.get('stoploss_on_exchange') and self.handle_stoploss_on_exchange(trade)): trades_closed += 1 continue # Check if we can sell our current pair if trade.open_order_id is None and self.handle_trade(trade): trades_closed += 1 except DependencyException as exception: logger.warning('Unable to sell trade: %s', exception) # Updating wallets if any trade occured if trades_closed: self.wallets.update() return trades_closed def get_sell_rate(self, pair: str, refresh: bool) -> float: """ Get sell rate - either using get-ticker bid or first bid based on orderbook The orderbook portion is only used for rpc messaging, which would otherwise fail for BitMex (has no bid/ask in fetch_ticker) or remain static in any other case since it's not updating. :return: Bid rate """ config_ask_strategy = self.config.get('ask_strategy', {}) if config_ask_strategy.get('use_order_book', False): logger.debug('Using order book to get sell rate') order_book = self.exchange.get_order_book(pair, 1) rate = order_book['bids'][0][0] else: rate = self.exchange.fetch_ticker(pair, refresh)['bid'] return rate def handle_trade(self, trade: Trade) -> bool: """ Sells the current pair if the threshold is reached and updates the trade record. :return: True if trade has been sold, False otherwise """ if not trade.is_open: raise DependencyException( f'Attempt to handle closed trade: {trade}') logger.debug('Handling %s ...', trade) (buy, sell) = (False, False) config_ask_strategy = self.config.get('ask_strategy', {}) if (config_ask_strategy.get('use_sell_signal', True) or config_ask_strategy.get('ignore_roi_if_buy_signal')): (buy, sell) = self.strategy.get_signal( trade.pair, self.strategy.ticker_interval, self.dataprovider.ohlcv(trade.pair, self.strategy.ticker_interval)) if config_ask_strategy.get('use_order_book', False): logger.info('Using order book for selling...') # logger.debug('Order book %s',orderBook) order_book_min = config_ask_strategy.get('order_book_min', 1) order_book_max = config_ask_strategy.get('order_book_max', 1) order_book = self.exchange.get_order_book(trade.pair, order_book_max) for i in range(order_book_min, order_book_max + 1): order_book_rate = order_book['asks'][i - 1][0] logger.info(' order book asks top %s: %0.8f', i, order_book_rate) sell_rate = order_book_rate if self._check_and_execute_sell(trade, sell_rate, buy, sell): return True else: logger.debug('checking sell') sell_rate = self.get_sell_rate(trade.pair, True) if self._check_and_execute_sell(trade, sell_rate, buy, sell): return True logger.debug('Found no sell signal for %s.', trade) return False def create_stoploss_order(self, trade: Trade, stop_price: float, rate: float) -> bool: """ Abstracts creating stoploss orders from the logic. Handles errors and updates the trade database object. Force-sells the pair (using EmergencySell reason) in case of Problems creating the order. :return: True if the order succeeded, and False in case of problems. """ # Limit price threshold: As limit price should always be below stop-price LIMIT_PRICE_PCT = self.strategy.order_types.get( 'stoploss_on_exchange_limit_ratio', 0.99) try: stoploss_order = self.exchange.stoploss_limit( pair=trade.pair, amount=trade.amount, stop_price=stop_price, rate=rate * LIMIT_PRICE_PCT) trade.stoploss_order_id = str(stoploss_order['id']) return True except InvalidOrderException as e: trade.stoploss_order_id = None logger.error(f'Unable to place a stoploss order on exchange. {e}') logger.warning('Selling the trade forcefully') self.execute_sell(trade, trade.stop_loss, sell_reason=SellType.EMERGENCY_SELL) except DependencyException: trade.stoploss_order_id = None logger.exception('Unable to place a stoploss order on exchange.') return False def handle_stoploss_on_exchange(self, trade: Trade) -> bool: """ Check if trade is fulfilled in which case the stoploss on exchange should be added immediately if stoploss on exchange is enabled. """ logger.debug('Handling stoploss on exchange %s ...', trade) stoploss_order = None try: # First we check if there is already a stoploss on exchange stoploss_order = self.exchange.get_order(trade.stoploss_order_id, trade.pair) \ if trade.stoploss_order_id else None except InvalidOrderException as exception: logger.warning('Unable to fetch stoploss order: %s', exception) # If buy order is fulfilled but there is no stoploss, we add a stoploss on exchange if (not trade.open_order_id and not stoploss_order): stoploss = self.edge.stoploss( pair=trade.pair) if self.edge else self.strategy.stoploss stop_price = trade.open_rate * (1 + stoploss) if self.create_stoploss_order(trade=trade, stop_price=stop_price, rate=stop_price): trade.stoploss_last_update = datetime.now() return False # If stoploss order is canceled for some reason we add it if stoploss_order and stoploss_order['status'] == 'canceled': if self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss, rate=trade.stop_loss): return False else: trade.stoploss_order_id = None logger.warning( 'Stoploss order was cancelled, but unable to recreate one.' ) # We check if stoploss order is fulfilled if stoploss_order and stoploss_order['status'] == 'closed': trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value trade.update(stoploss_order) # Lock pair for one candle to prevent immediate rebuys self.strategy.lock_pair( trade.pair, timeframe_to_next_date(self.config['ticker_interval'])) self._notify_sell(trade, "stoploss") return True # Finally we check if stoploss on exchange should be moved up because of trailing. if stoploss_order and self.config.get('trailing_stop', False): # if trailing stoploss is enabled we check if stoploss value has changed # in which case we cancel stoploss order and put another one with new # value immediately self.handle_trailing_stoploss_on_exchange(trade, stoploss_order) return False def handle_trailing_stoploss_on_exchange(self, trade: Trade, order): """ Check to see if stoploss on exchange should be updated in case of trailing stoploss on exchange :param Trade: Corresponding Trade :param order: Current on exchange stoploss order :return: None """ if trade.stop_loss > float(order['info']['stopPrice']): # we check if the update is neccesary update_beat = self.strategy.order_types.get( 'stoploss_on_exchange_interval', 60) if (datetime.utcnow() - trade.stoploss_last_update).total_seconds() >= update_beat: # cancelling the current stoploss on exchange first logger.info( 'Trailing stoploss: cancelling current stoploss on exchange (id:{%s})' 'in order to add another one ...', order['id']) try: self.exchange.cancel_order(order['id'], trade.pair) except InvalidOrderException: logger.exception( f"Could not cancel stoploss order {order['id']} " f"for pair {trade.pair}") # Create new stoploss order if self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss, rate=trade.stop_loss): return False else: logger.warning(f"Could not create trailing stoploss order " f"for pair {trade.pair}.") def _check_and_execute_sell(self, trade: Trade, sell_rate: float, buy: bool, sell: bool) -> bool: """ Check and execute sell """ should_sell = self.strategy.should_sell( trade, sell_rate, datetime.utcnow(), buy, sell, force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0) if should_sell.sell_flag: self.execute_sell(trade, sell_rate, should_sell.sell_type) logger.info('executed sell, reason: %s', should_sell.sell_type) return True return False def _check_timed_out(self, side: str, order: dict) -> bool: """ Check if timeout is active, and if the order is still open and timed out """ timeout = self.config.get('unfilledtimeout', {}).get(side) ordertime = arrow.get(order['datetime']).datetime if timeout is not None: timeout_threshold = arrow.utcnow().shift(minutes=-timeout).datetime return (order['status'] == 'open' and order['side'] == side and ordertime < timeout_threshold) return False def check_handle_timedout(self) -> None: """ Check if any orders are timed out and cancel if neccessary :param timeoutvalue: Number of minutes until order is considered timed out :return: None """ for trade in Trade.get_open_order_trades(): try: if not trade.open_order_id: continue order = self.exchange.get_order(trade.open_order_id, trade.pair) except (RequestException, DependencyException, InvalidOrderException): logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc()) continue # Check if trade is still actually open if float(order.get('remaining', 0.0)) == 0.0: self.wallets.update() continue if ((order['side'] == 'buy' and order['status'] == 'canceled') or (self._check_timed_out('buy', order))): self.handle_timedout_limit_buy(trade, order) self.wallets.update() elif ((order['side'] == 'sell' and order['status'] == 'canceled') or (self._check_timed_out('sell', order))): self.handle_timedout_limit_sell(trade, order) self.wallets.update() def handle_buy_order_full_cancel(self, trade: Trade, reason: str) -> None: """Close trade in database and send message""" Trade.session.delete(trade) Trade.session.flush() logger.info('Buy order %s for %s.', reason, trade) self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'Unfilled buy order for {trade.pair} {reason}' }) def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool: """ Buy timeout - cancel order :return: True if order was fully cancelled """ reason = "cancelled due to timeout" if order['status'] != 'canceled': corder = self.exchange.cancel_order(trade.open_order_id, trade.pair) else: # Order was cancelled already, so we can reuse the existing dict corder = order reason = "canceled on Exchange" if corder.get('remaining', order['remaining']) == order['amount']: # if trade is not partially completed, just delete the trade self.handle_buy_order_full_cancel(trade, reason) return True # if trade is partially complete, edit the stake details for the trade # and close the order # cancel_order may not contain the full order dict, so we need to fallback # to the order dict aquired before cancelling. # we need to fall back to the values from order if corder does not contain these keys. trade.amount = order['amount'] - corder.get('remaining', order['remaining']) trade.stake_amount = trade.amount * trade.open_rate # verify if fees were taken from amount to avoid problems during selling try: new_amount = self.get_real_amount( trade, corder if 'fee' in corder else order, trade.amount) if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC): trade.amount = new_amount # Fee was applied, so set to 0 trade.fee_open = 0 trade.recalc_open_trade_price() except DependencyException as e: logger.warning("Could not update trade amount: %s", e) trade.open_order_id = None logger.info('Partial buy order timeout for %s.', trade) self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'Remaining buy order for {trade.pair} cancelled due to timeout' }) return False def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool: """ Sell timeout - cancel order and update trade :return: True if order was fully cancelled """ if order['remaining'] == order['amount']: # if trade is not partially completed, just cancel the trade if order["status"] != "canceled": reason = "due to timeout" self.exchange.cancel_order(trade.open_order_id, trade.pair) logger.info('Sell order timeout for %s.', trade) else: reason = "on exchange" logger.info('Sell order canceled on exchange for %s.', trade) trade.close_rate = None trade.close_profit = None trade.close_date = None trade.is_open = True trade.open_order_id = None self.rpc.send_msg({ 'type': RPCMessageType.STATUS_NOTIFICATION, 'status': f'Unfilled sell order for {trade.pair} cancelled {reason}' }) return True # TODO: figure out how to handle partially complete sell orders return False def _safe_sell_amount(self, pair: str, amount: float) -> float: """ Get sellable amount. Should be trade.amount - but will fall back to the available amount if necessary. This should cover cases where get_real_amount() was not able to update the amount for whatever reason. :param pair: Pair we're trying to sell :param amount: amount we expect to be available :return: amount to sell :raise: DependencyException: if available balance is not within 2% of the available amount. """ # Update wallets to ensure amounts tied up in a stoploss is now free! self.wallets.update() wallet_amount = self.wallets.get_free(pair.split('/')[0]) logger.debug( f"{pair} - Wallet: {wallet_amount} - Trade-amount: {amount}") if wallet_amount >= amount: return amount elif wallet_amount > amount * 0.98: logger.info(f"{pair} - Falling back to wallet-amount.") return wallet_amount else: raise DependencyException( f"Not enough amount to sell. Trade-amount: {amount}, Wallet: {wallet_amount}" ) def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> None: """ Executes a limit sell for the given trade and limit :param trade: Trade instance :param limit: limit rate for the sell order :param sellreason: Reason the sell was triggered :return: None """ sell_type = 'sell' if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS): sell_type = 'stoploss' # if stoploss is on exchange and we are on dry_run mode, # we consider the sell price stop price if self.config['dry_run'] and sell_type == 'stoploss' \ and self.strategy.order_types['stoploss_on_exchange']: limit = trade.stop_loss # First cancelling stoploss on exchange ... if self.strategy.order_types.get( 'stoploss_on_exchange') and trade.stoploss_order_id: try: self.exchange.cancel_order(trade.stoploss_order_id, trade.pair) except InvalidOrderException: logger.exception( f"Could not cancel stoploss order {trade.stoploss_order_id}" ) order_type = self.strategy.order_types[sell_type] if sell_reason == SellType.EMERGENCY_SELL: # Emergencysells (default to market!) order_type = self.strategy.order_types.get("emergencysell", "market") amount = self._safe_sell_amount(trade.pair, trade.amount) # Execute sell and update trade record order = self.exchange.sell( pair=str(trade.pair), ordertype=order_type, amount=amount, rate=limit, time_in_force=self.strategy.order_time_in_force['sell']) trade.open_order_id = order['id'] trade.close_rate_requested = limit trade.sell_reason = sell_reason.value # In case of market sell orders the order can be closed immediately if order.get('status', 'unknown') == 'closed': trade.update(order) Trade.session.flush() # Lock pair for one candle to prevent immediate rebuys self.strategy.lock_pair( trade.pair, timeframe_to_next_date(self.config['ticker_interval'])) self._notify_sell(trade, order_type) def _notify_sell(self, trade: Trade, order_type: str): """ Sends rpc notification when a sell occured. """ profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested profit_trade = trade.calc_profit(rate=profit_rate) # Use cached ticker here - it was updated seconds ago. current_rate = self.get_sell_rate(trade.pair, False) profit_percent = trade.calc_profit_ratio(profit_rate) gain = "profit" if profit_percent > 0 else "loss" msg = { 'type': RPCMessageType.SELL_NOTIFICATION, 'exchange': trade.exchange.capitalize(), 'pair': trade.pair, 'gain': gain, 'limit': trade.close_rate_requested, 'order_type': order_type, 'amount': trade.amount, 'open_rate': trade.open_rate, 'current_rate': current_rate, 'profit_amount': profit_trade, 'profit_percent': profit_percent, 'sell_reason': trade.sell_reason, 'open_date': trade.open_date, 'close_date': trade.close_date or datetime.utcnow(), 'stake_currency': self.config['stake_currency'], } if 'fiat_display_currency' in self.config: msg.update({ 'fiat_currency': self.config['fiat_display_currency'], }) # Send the message self.rpc.send_msg(msg) # # Common update trade state methods # def update_trade_state(self, trade, action_order: dict = None): """ Checks trades with open orders and updates the amount if necessary """ # Get order details for actual price per unit if trade.open_order_id: # Update trade with order values logger.info('Found open order for %s', trade) try: order = action_order or self.exchange.get_order( trade.open_order_id, trade.pair) except InvalidOrderException as exception: logger.warning('Unable to fetch order %s: %s', trade.open_order_id, exception) return # Try update amount (binance-fix) try: new_amount = self.get_real_amount(trade, order) if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC): order['amount'] = new_amount # Fee was applied, so set to 0 trade.fee_open = 0 trade.recalc_open_trade_price() except DependencyException as exception: logger.warning("Could not update trade amount: %s", exception) trade.update(order) # Updating wallets when order is closed if not trade.is_open: self.wallets.update() def get_real_amount(self, trade: Trade, order: Dict, order_amount: float = None) -> float: """ Get real amount for the trade Necessary for exchanges which charge fees in base currency (e.g. binance) """ if order_amount is None: order_amount = order['amount'] # Only run for closed orders if trade.fee_open == 0 or order['status'] == 'open': return order_amount # use fee from order-dict if possible if ('fee' in order and order['fee'] is not None and (order['fee'].keys() >= {'currency', 'cost'})): if (order['fee']['currency'] is not None and order['fee']['cost'] is not None and trade.pair.startswith(order['fee']['currency'])): new_amount = order_amount - order['fee']['cost'] logger.info( "Applying fee on amount for %s (from %s to %s) from Order", trade, order['amount'], new_amount) return new_amount # Fallback to Trades trades = self.exchange.get_trades_for_order(trade.open_order_id, trade.pair, trade.open_date) if len(trades) == 0: logger.info( "Applying fee on amount for %s failed: myTrade-Dict empty found", trade) return order_amount amount = 0 fee_abs = 0 for exectrade in trades: amount += exectrade['amount'] if ("fee" in exectrade and exectrade['fee'] is not None and (exectrade['fee'].keys() >= {'currency', 'cost'})): # only applies if fee is in quote currency! if (exectrade['fee']['currency'] is not None and exectrade['fee']['cost'] is not None and trade.pair.startswith(exectrade['fee']['currency'])): fee_abs += exectrade['fee']['cost'] if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC): logger.warning( f"Amount {amount} does not match amount {trade.amount}") raise DependencyException("Half bought? Amounts don't match") real_amount = amount - fee_abs if fee_abs != 0: logger.info(f"Applying fee on amount for {trade} " f"(from {order_amount} to {real_amount}) from Trades") return real_amount