def get_approximate_frequent_words(text, k, d):
    # Flag indicies of candidate kmers from neighborhoods
    is_neighbor_flags = [0] * pow(4, k)
    for position, kmer in ApproximatePatternMatching_1F.yield_kmers_by_position(text, k):
        neighbors = calculate_neighbors(kmer, d)
        for neighbor in neighbors:
            number = frequency_array_lib.pattern_to_number(neighbor)
            is_neighbor_flags[number] = 1

    # Count approximate occurences of candidates
    chunk_size = 5
    translation_table = build_translation_table(chunk_size)
    frequency_array = [0] * pow(4, k)
    for i in range(len(is_neighbor_flags)):
        if 1 == is_neighbor_flags[i]:
            kmer = frequency_array_lib.number_to_pattern(i, k)
            reverse_complement = generate_strand_complement(kmer, translation_table, chunk_size)
            frequency = ApproximatePatternMatching_1F.count_approximate_matches(kmer, text, d) + ApproximatePatternMatching_1F.count_approximate_matches(reverse_complement, text, d)
            frequency_array[i] = frequency

    # Find max count
    max_count = -1
    for count in frequency_array:
        if count > max_count:
            max_count = count

    # Find most frequent kmers
    frequent = []
    for i in range(len(frequency_array)):
        if frequency_array[i] == max_count:
            kmer = frequency_array_lib.number_to_pattern(i, k)
            frequent.append(kmer)
    return frequent
示例#2
0
def compute_frequency_array(text, k):
    fa = [0] * pow(4, k)
    for kmer in frequency_array_lib.yield_kmers(text, k):
        number = frequency_array_lib.pattern_to_number(kmer)
        fa[number] = fa[number] + 1
    return fa
示例#3
0
def main():
    with fileinput.input() as fi:
        genome = fi.readline().rstrip()
        number = frequency_array_lib.pattern_to_number(genome)
        print(number)