lc.subtract_add_divide_without_outliers(params=hat11_params, quarterly_max=quarterly_maxes[lc.quarters[0]], plots=False) lc_output_path = os.path.join(output_dir, 'lc{0:03d}.txt'.format(transit_number)) np.savetxt(lc_output_path, np.vstack([lc.times.jd, lc.fluxes, lc.errors]).T) # Delete sharp outliers prior to peak-finding lc.delete_outliers() transit_model = generate_lc_depth(lc.times_jd, hat11_params.rp**2, hat11_params) residuals = lc.fluxes - transit_model # Find peaks in the light curve residuals best_fit_spot_params = peak_finder(lc.times.jd, residuals, lc.errors, hat11_params, n_peaks=4, plots=False, verbose=True) best_fit_gaussian_model = summed_gaussians(lc.times.jd, best_fit_spot_params) # If spots are detected: if best_fit_spot_params is not None: output_path = os.path.join(output_dir, 'chains{0:03d}.hdf5'.format(transit_number)) sampler = run_emcee_seeded(lc, hat11_params, best_fit_spot_params, n_steps=15000, n_walkers=150, output_path=output_path, burnin=0.6, n_extra_spots=0) #
# Subtract out a transit model transit_model = generate_lc_depth(lc.times_jd, depth, hat11_params) residuals = lc.fluxes - transit_model # Find peaks in the light curve residuals best_fit_spot_params = peak_finder( lc.times.jd, residuals, lc.errors, hat11_params, n_peaks=4, plots=False, verbose=True) best_fit_gaussian_model = summed_gaussians(lc.times.jd, best_fit_spot_params) # If spots are detected: if best_fit_spot_params is not None: output_path = os.path.join(output_dir, 'chains{0:03d}.hdf5'.format(transit_number)) sampler = run_emcee_seeded( lc, hat11_params, best_fit_spot_params, n_steps=5000, n_walkers=200, n_threads=32, output_path=output_path, burnin=0.5, n_extra_spots=1)