示例#1
0
    def test_conn_covgc(self):
        """Test function conn_covgc."""
        n_epochs = 5
        n_times = 100
        n_roi = 3
        x = np.random.rand(n_epochs, n_roi, n_times)
        dt = 10
        lag = 2
        t0 = [50, 80]

        _ = conn_covgc(x, dt, lag, t0, n_jobs=1, method='gc')
        gc = conn_covgc(x, dt, lag, t0, n_jobs=1, method='gauss')
        assert gc.shape == (n_epochs, 3, len(t0), 3)
        assert isinstance(gc, xr.DataArray)
        gc = conn_covgc(x,
                        dt,
                        lag,
                        t0,
                        n_jobs=1,
                        method='gc',
                        conditional=True)
示例#2
0
    def compute_covgc(self, ar, dt=50, lag=5, step=1, method='gc',
                      conditional=False):
        """Compute the Covariance-based Granger Causality.

        In addition of computing the Granger Causality, the mutual-information
        between the Granger causalitity and the stimulus is also computed.

        Parameters
        ----------
        dt : int
            Duration of the time window for covariance correlation in samples
        lag : int
            Number of samples for the lag within each trial
        step : int | 1
            Number of samples stepping between each sliding window onset
        method : {'gauss', 'gc'}
            Method for the estimation of the covgc. Use either 'gauss' which
            assumes that the time-points are normally distributed or 'gc' in
            order to use the gaussian-copula.

        Returns
        -------
        gc : array_like
            Granger Causality arranged as (n_epochs, n_pairs, n_windows, 3)
            where the last dimension means :

                * 0 : pairs[:, 0] -> pairs[:, 1] (x->y)
                * 1 : pairs[:, 1] -> pairs[:, 0] (y->x)
                * 2 : instantaneous  (x.y)
        """
        # compute the granger causality
        t0 = np.arange(lag, ar.shape[-1] - dt, step)
        gc = conn_covgc(ar, dt, lag, t0, times='times', method=method,
                        roi='roi', step=1, conditional=conditional)
        gc['trials'] = ar['trials']
        self._gc = gc
        # compute the MI between stimulus / raw
        mi = mi_model_nd_gd(gc.data, gc['trials'].data, traxis=0)
        self._mi = xr.DataArray(mi, dims=('roi', 'times', 'direction'),
                                coords=(gc['roi'], gc['times'],
                                        gc['direction']))
        self._mi.attrs['description'] = (
            "Mutual information between the stimulus and the output of the "
            "covgc")

        return gc
示例#3
0
 def test_conn_reshape_directed(self):
     """Test function conn_reshape_directed."""
     n_epochs, n_times, n_roi = 5, 100, 3
     x = np.random.rand(n_epochs, n_roi, n_times)
     dt, lag, t0 = 10, 2, [50, 80]
     order = ['roi_2', 'roi_1']
     # compute covgc
     gc = conn_covgc(x, dt, lag, t0, n_jobs=1, method='gauss')
     gc = gc.mean('trials')
     # reshape it without the time dimension
     gc_mean = conn_reshape_directed(gc.copy().mean('times'))
     assert gc_mean.shape == (n_roi, n_roi, 1)
     # reshape it with the time dimension
     gc_times = conn_reshape_directed(gc.copy())
     assert gc_times.shape == (n_roi, n_roi, len(gc['times']))
     # try the reorder
     gc_order = conn_reshape_directed(gc.copy(), order=order)
     assert gc_order.shape == (2, 2, len(gc['times']))
     assert np.array_equal(gc_order['sources'], gc_order['targets'])
     assert np.array_equal(gc_order['sources'], order)
示例#4
0
# directed flow from 0 to 1 (0->1)
x[:, [0], slice(600, 800)] += x[:, [1], slice(600, 800)]
x[:, [0], slice(599, 799)] += x[:, [0], slice(600, 800)]


###############################################################################
# Compute the covgc
# -----------------
#
# The covgc is going to be computed per trials, bewteen pairs of ROI and inside
# each of the temporal window

t0 = np.arange(100, 900, 10)
lag = 10
dt = 100
gc = conn_covgc(x, dt, lag, t0, times=times, roi=roi, n_jobs=1)
roi_p = gc['roi'].data

###############################################################################
# Below we plot the mean time series of both directed and undirected covgc

# take the mean across trials
gc = gc.mean('trials')

plt.figure(figsize=(10, 8))
plt.subplot(311)
for r in roi_p:
    plt.plot(gc.times.data, gc.sel(roi=r, direction='x->y').T,
             label=r.replace('-', ' -> '))
plt.legend()
plt.subplot(312)
示例#5
0
# -----------------------------
#
# We first compute the Granger Causality and then the conditional Granger
# causality (i.e conditioning by the past coming from other sources)

dt, lag, step = 50, 5, 2
t0 = np.arange(lag, ar.shape[-1] - dt, step)
kw_gc = dict(dt=dt,
             lag=lag,
             step=1,
             t0=t0,
             roi='roi',
             times='times',
             n_jobs=-1)
# granger causality
gc = conn_covgc(ar, conditional=False, **kw_gc)

# conditional granger causality
gc_cond = conn_covgc(ar, conditional=True, **kw_gc)

###############################################################################
# Plot the Granger causality

plt.figure(figsize=(12, 10))
ss.plot_covgc(gc)
plt.tight_layout()
plt.show()

###############################################################################
# Plot the conditional Granger causality
示例#6
0
# -------------------------------------------------
#
# The final point of this tutorial is to try to compute the directed
# connectivity and perform the stats on it to see whether the information is
# sent from one region to another (which should be X->Y)

# covgc settings
dt = 50
lag = 5
step = 3
t0 = np.arange(lag, len(times) - dt, step)

# compute the covgc for each subject
gc = []
for n_s in range(n_subjects):
    _gc = conn_covgc(x[n_s], roi='roi', times='times', dt=dt, lag=lag, t0=t0,
                     n_jobs=1)
    gc += [_gc]
gc_times, gc_roi = _gc['times'].data, _gc['roi'].data

# plot the mean covgc across subjects
gc_suj = xr.concat(gc, 'trials').groupby('trials').mean('trials')

fig, gs  = plt.subplots(3, 3, sharex='all', sharey='all',
                        figsize=(12, 12))
for n_d, direction in enumerate(['x->y', 'y->x', 'x.y']):
    for n_r, r in enumerate(gc_roi):
        gc_dir_r = gc_suj.sel(direction=direction, roi=r)

        plt.sca(gs[n_d, n_r])
        plt.plot(gc_times, gc_dir_r.sel(trials=1), color='red')
        plt.plot(gc_times, gc_dir_r.sel(trials=2), color='green')
###############################################################################
# plot the power spectrum density (PSD)

plt.figure(figsize=(7, 8))
ss.plot(cmap='Reds', psd=True)
plt.tight_layout()
plt.show()


###############################################################################
# Compute the Granger-Causality
# -----------------------------
#
# We then compute and plot the Granger Causality. From the plot you can see
# that there's indeed an information transfer from X->Y and X->Z and, in
# addition, an instantaneous connectivity between Y.Z

dt = 50
lag = 5
step = 2
t0 = np.arange(lag, ar.shape[-1] - dt, step)
gc = conn_covgc(ar, roi='roi', times='times', dt=dt, lag=lag, t0=t0,
                n_jobs=-1)

# sphinx_gallery_thumbnail_number = 4
plt.figure(figsize=(12, 10))
ss.plot_covgc(gc)
plt.tight_layout()
plt.show()