def test_savgol_filter(self): """Test function savgol_filter.""" d_3d = self._get_data(3) ds = DatasetEphy(d_3d, times='times', **kw) ds.savgol_filter(10., verbose=False)
plt.xlabel('Times') plt.title('Electrophysiological data of the first subject, for the first ' 'channel') plt.show() ############################################################################### # Data smoothing # -------------- # # If you have MNE-Python installed, you can also smooth the data using # :class:`frites.dataset.DatasetEphy.savgol_filter`. One important thing is # that operations are performed inplace, which means that once launched, the # data are modified inside the dataset without copy # high cut-off frequency at 4Hz dt.savgol_filter(4) plt.plot(dt.times, dt.x[0][:, 0, :].T) plt.xlabel('Times') plt.title('Smoothed dataset') plt.show() ############################################################################### # Temporal slicing # ----------------------- # # The dataset also supports some basic slicing operations through time. Slicing # is still performed inplace # temporal selection between [0.25, 1.75] dt = dt.sel(times=slice(0.25, 1.75))