示例#1
0
 def test_definition(self):
     """Test workflow definition."""
     y, gt = sim_mi_cc(x, snr=1.)
     dt = DatasetEphy(x, y, roi, times=time)
     wf = WfMi(mi_type='cc', inference='rfx')
     wf.fit(dt, **kw_mi)
     wf.tvalues
示例#2
0
 def test_no_stat(self):
     """Test on no stats / no permutations / don't repeat computations."""
     y, gt = sim_mi_cc(x, snr=1.)
     dt = DatasetEphy(x, y, roi, times=time)
     # compute permutations but not statistics
     kernel = np.hanning(3)
     wf = WfMi('cc', 'ffx', kernel=kernel, verbose=False)
     assert isinstance(wf.wf_stats, WfStats)
     wf.fit(dt, mcp='nostat', **kw_mi)
     assert len(wf.mi) == len(wf.mi_p) == n_roi
     assert len(wf.mi_p[0].shape) != 0
     # don't compute permutations nor stats
     wf = WfMi('cc', 'ffx', verbose=False)
     mi, pv = wf.fit(dt, mcp=None, **kw_mi)
     assert wf.mi_p[0].shape == (0, )
     assert pv.min() == pv.max() == 1.
     # don't compute permutations twice
     wf = WfMi('cc', 'ffx', verbose=False)
     t_start_1 = tst()
     wf.fit(dt, mcp='fdr', **kw_mi)
     t_end_1 = tst()
     t_start_2 = tst()
     wf.fit(dt, mcp='maxstat', **kw_mi)
     t_end_2 = tst()
     assert t_end_1 - t_start_1 > t_end_2 - t_start_2
示例#3
0
 def test_conjunction_analysis(self):
     """Test the conjunction analysis."""
     y, gt = sim_mi_cc(x, snr=1.)
     dt = DatasetEphy(x, y, roi, times=time)
     wf = WfMi(mi_type='cc', inference='rfx')
     mi, pv = wf.fit(dt, **kw_mi)
     cj_ss, cj = wf.conjunction_analysis(dt)
     assert cj_ss.shape == (n_subjects, n_times, n_roi)
     assert cj.shape == (n_times, n_roi)
else:
    mcp = "cluster"

estimator = GCMIEstimator(mi_type='cd',
                          copnorm=True,
                          biascorrect=True,
                          demeaned=False,
                          tensor=True,
                          gpu=False,
                          verbose=None)
wf = WfMi(mi_type, inference, verbose=True, kernel=kernel, estimator=estimator)

kw = dict(n_jobs=20, n_perm=200)
cluster_th = None  # {float, None, 'tfce'}

mi, pvalues = wf.fit(dt, mcp=mcp, cluster_th=cluster_th, **kw)

###############################################################################
# Saving results
###############################################################################

# Path to results folder
_RESULTS = os.path.join(_ROOT, "Results/lucy/mutual_information/network/")

path_mi = os.path.join(_RESULTS, f"mi_{metric}_{feat}_avg_{avg}_{mcp}.nc")
path_tv = os.path.join(_RESULTS, f"tval_{metric}_{feat}_avg_{avg}_{mcp}.nc")
path_pv = os.path.join(_RESULTS, f"pval_{metric}_{feat}_avg_{avg}_{mcp}.nc")

mi.to_netcdf(path_mi)
wf.tvalues.to_netcdf(path_tv)
pvalues.to_netcdf(path_pv)
示例#5
0
###############################################################################
# Define the electrophysiological dataset
# ---------------------------------------
#
# Now we define an instance of :class:`frites.dataset.DatasetEphy`

dt = DatasetEphy(x, y=y, roi=roi, times=time)

###############################################################################
# Compute the mutual information
# ------------------------------
#
# Once we have the dataset instance, we can then define an instance of workflow
# :class:`frites.workflow.WfMi`. This instance is used to compute the mutual
# information

# mutual information type ('cd' = continuous / discret)
mi_type = 'cd'

# define the workflow
wf = WfMi(mi_type=mi_type, verbose=False)
# compute the mutual information
mi, _ = wf.fit(dt, mcp=None, n_jobs=1)

# plot the information shared between the data and the regressor y
plt.plot(time, mi)
plt.xlabel("Time (s)"), plt.ylabel("MI (bits)")
plt.title('I(C; D)')
plt.show()
    _x = xr.DataArray(x_single_suj,
                      dims=('trials', 'roi', 'freqs', 'times'),
                      coords=(y_single_suj, ['roi_0'], freqs, times))
    x += [_x]

# define an instance of DatasetEphy
ds = DatasetEphy(x, y='trials', roi='roi', times='times')

###############################################################################
# Compute the mutual information
###############################################################################
# Then we compute the quantity of information shared by the time-frequency data
# and the continuous regressor

# compute the mutual information
wf = WfMi(inference='ffx', mi_type='cc')
mi, pv = wf.fit(ds, n_perm=200, mcp='cluster', random_state=0, n_jobs=1)

###############################################################################
# plot the mutual information and p-values

plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
mi.squeeze().plot.pcolormesh(vmin=0, cmap='inferno')
plt.title('Mutual information')
plt.subplot(1, 2, 2)
pv.squeeze().plot.pcolormesh(cmap='Blues_r')
plt.title('Significant p-values (p<0.05, cluster-corrected)')
plt.tight_layout()
plt.show()
示例#7
0
###############################################################################
# Compute the mutual information
# ------------------------------
#
# Once we have the dataset instance, we can then define an instance of workflow
# :class:`frites.workflow.WfMi`. This instance is used to compute the mutual
# information

# mutual information type ('cc' = continuous / continuous)
mi_type = 'cc'

# define the workflow
wf = WfMi(mi_type, inference='ffx')
# compute the mutual information without permutations
mi, _ = wf.fit(dt, mcp=None)

# plot the information shared between the data and the regressor y
plt.plot(time, mi)
plt.xlabel("Time (s)"), plt.ylabel("MI (bits)")
plt.title('I(C; C)')
plt.show()

###############################################################################
# Multivariate regressor
# ----------------------
#
# Example above uses a univariate regressor (i.e a single column vector). But
# multivariate regressors are also supported. Here is an example
# of multivariate regressor
示例#8
0
plt.show()

###############################################################################
# Stimulus-specificity of the nodes of the network
# ------------------------------------------------
#
# In order to determine if the activity of each node is modulated according
# to the stimulus, we then compute the mutual information between the
# high-gamma and the stimulus variable.

# define an electrophysiological dataset
ds = DatasetEphy(x.copy(), y='trials', times='times', roi='roi')
# define a workflow of mutual information
wf = WfMi(mi_type='cd', inference='rfx')
# run the workflow
mi, pv = wf.fit(ds, n_perm=200, n_jobs=1, random_state=0)

###############################################################################
# define the MI plotting function

def plot_mi(mi, pv):
    # figure definition
    n_subs = len(mi['roi'].data)
    space_single_sub = 4
    fig, gs  = plt.subplots(1, 3, sharex='all', sharey='all',
                            figsize=(n_subs * space_single_sub, 4))

    for n_r, r in enumerate(mi['roi'].data):
        # select mi and p-values for a single roi
        mi_r, pv_r = mi.sel(roi=r), pv.sel(roi=r)
        # set to nan when it's not significant
示例#9
0
###############################################################################
# Define the electrophysiological dataset
# ---------------------------------------
#
# Now we define an instance of :class:`frites.dataset.DatasetEphy`

dt = DatasetEphy(x, y, roi)

###############################################################################
# Compute the mutual information
# ------------------------------
#
# Once we have the dataset instance, we can then define an instance of workflow
# :class:`frites.workflow.WfMi`. This instance is used to compute the mutual
# information

# mutual information type ('cd' = continuous / discret)
mi_type = 'cd'

# define the workflow
wf = WfMi(mi_type)
# compute the mutual information
mi, _ = wf.fit(dt, mcp=None)

# plot the information shared between the data and the regressor y
plt.plot(time, mi)
plt.xlabel("Time (s)"), plt.ylabel("MI (bits)")
plt.title('I(C; D)')
plt.show()
示例#10
0
###############################################################################
# Compute the mutual information
# ------------------------------
#
# Once we have the dataset instance, we can then define an instance of workflow
# :class:`frites.workflow.WfMi`. This instance is used to compute the mutual
# information

# mutual information type ('cc' = continuous / continuous)
mi_type = 'cc'
inference = 'rfx'  # don't use 'ffx' for assessing conjunction analysis !

# define the workflow
wf = WfMi(mi_type)
# compute the mutual information
mi, pv = wf.fit(dt, mcp='cluster', n_perm=200, n_jobs=1, random_state=0)
n_roi = len(mi.roi.data)

# plot where there's significant values of mi
fig = plt.figure(figsize=(16, 4))
for n_r, r in enumerate(mi.roi.data):
    # select the mi and p-values a specific roi
    mi_r, pv_r = mi.sel(roi=r), pv.sel(roi=r)
    # make a copy of the mi and set to nan everywhere it's not significant
    mi_sr = mi_r.copy()
    mi_sr.data[pv_r >= .05] = np.nan
    # superimpose mi and significant mi
    plt.subplot(1, n_roi, n_r + 1)
    plt.plot(times, mi_r)
    plt.plot(times, mi_sr, lw=4)
    plt.xlabel('Times'), plt.ylabel('MI (bits)')