示例#1
0
#lbl = np.array([1, 2, 1, 1, 2, 1])
mat = pd.DataFrame([[1, 0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0],
                    [0, 1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 0, 1, 0]],
                   dtype=np.float64)
lbl = np.array([0, 1, 1, 0], dtype=np.float64)

nbm = MultinomialNB(alpha=1.0).fit(mat, lbl)
nbm.debug_print()
print("predicting on nbm multinomial classifier model: ")
nbmc = nbm.predict(mat)
print("Accuracy of model: ", nbm.score(mat, lbl))

nbm2 = BernoulliNB(alpha=1.0).fit(mat, lbl)
nbm2.debug_print()
print("predicting on nbm bernoulli classifier model: ")
nbbc = nbm2.predict(mat)
print("Accuracy of model: ", nbm2.score(mat, lbl))

from sklearn.naive_bayes import MultinomialNB
clb = MultinomialNB(alpha=1.0).fit(mat, lbl)

from sklearn.naive_bayes import BernoulliNB
clf = BernoulliNB(alpha=1.0).fit(mat, lbl)

if (clf.predict(mat) == nbbc).all() and (clb.predict(mat) == nbmc).all():
    print("Status: Passed")
else:
    print("Status: Failed")

nbm.release()
nbm2.release()
示例#2
0
mat = pd.DataFrame([[1, 0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0],
                    [0, 1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 0, 1, 0]],
                   dtype=np.float64)
lbl = np.array([0, 1, 1, 0], dtype=np.float64)

# fitting input matrix and label on linear nbm object
nbm = MultinomialNB(alpha=1.4).fit(mat, lbl)
nbm.debug_print()
print("predicting on nbm multinomial classifier model: ")
mnb = nbm.predict(mat)
print(mnb)
print("Accuracy of model")
nbm.score(mat, lbl)

nbm2 = BernoulliNB(alpha=1.4).fit(mat, lbl)
nbm2.debug_print()
print("predicting on nbm bernoulli classifier model: ")
bnb = nbm2.predict(mat)
print(bnb)
print("Accuracy of model")
nbm2.score(mat, lbl)

if (lbl == mnb).all() and (lbl == bnb).all():
    print("Status: Passed")
else:
    print("Status: Failed")

nbm.release()
nbm2.release()
FrovedisServer.shut_down()
示例#3
0
# initializing the Frovedis server
argvs = sys.argv
argc = len(argvs)
if (argc < 2):
    print(
        'Please give frovedis_server calling command as the first argument \n(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")'
    )
    quit()

from frovedis.exrpc.server import FrovedisServer
FrovedisServer.initialize(argvs[1])

# classification data
from sklearn.datasets import load_breast_cancer
mat, lbl = load_breast_cancer(return_X_y=True)

mnb = MultinomialNB(alpha=1.0).fit(mat, lbl)
pred = mnb.predict(mat)
print("prediction on multinomial classifier model: ")
print(pred)
print("prediction accuracy: %.4f" % (mnb.score(mat, lbl)))

bnb = BernoulliNB(alpha=1.0).fit(mat, lbl)
pred = bnb.predict(mat)
print("prediction on bernoulli classifier model: ")
print(pred)
print("prediction accuracy: %.4f" % (bnb.score(mat, lbl)))

# Clean-up
FrovedisServer.shut_down()