# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import numpy as np import torch from fvcore.nn import smooth_l1_loss from torch import nn from torch.nn import functional as F from fs3c.layers import batched_nms, cat from fs3c.structures import Boxes, Instances from fs3c.utils.events import get_event_storage from fs3c.utils.registry import Registry ROI_HEADS_OUTPUT_REGISTRY = Registry("ROI_HEADS_OUTPUT") ROI_HEADS_OUTPUT_REGISTRY.__doc__ = """ Registry for the output layers in ROI heads in a generalized R-CNN model.""" logger = logging.getLogger(__name__) """ Shape shorthand in this module: N: number of images in the minibatch R: number of ROIs, combined over all images, in the minibatch Ri: number of ROIs in image i K: number of foreground classes. E.g.,there are 80 foreground classes in COCO. Naming convention: deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box transform (see :class:`box_regression.Box2BoxTransform`).
from fs3c.layers import ShapeSpec from fs3c.structures import Boxes, Instances, pairwise_iou from fs3c.utils.events import get_event_storage from fs3c.utils.registry import Registry from ..backbone.resnet import BottleneckBlock, make_stage from ..box_regression import Box2BoxTransform from ..matcher import Matcher from ..poolers import ROIPooler from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals from ..sampling import subsample_labels from .box_head import build_box_head from .fast_rcnn import FastRCNNOutputLayers, FastRCNNOutputs, ROI_HEADS_OUTPUT_REGISTRY ROI_HEADS_REGISTRY = Registry("ROI_HEADS") ROI_HEADS_REGISTRY.__doc__ = """ Registry for ROI heads in a generalized R-CNN model. ROIHeads take feature maps and region proposals, and perform per-region computation. The registered object will be called with `obj(cfg, input_shape)`. The call is expected to return an :class:`ROIHeads`. """ logger = logging.getLogger(__name__) def build_roi_heads(cfg, input_shape): """ Build ROIHeads defined by `cfg.MODEL.ROI_HEADS.NAME`.
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Dict, List import torch import torch.nn.functional as F from torch import nn from fs3c.layers import ShapeSpec from fs3c.utils.registry import Registry from ..anchor_generator import build_anchor_generator from ..box_regression import Box2BoxTransform from ..matcher import Matcher from .build import PROPOSAL_GENERATOR_REGISTRY from .rpn_outputs import RPNOutputs, find_top_rpn_proposals RPN_HEAD_REGISTRY = Registry("RPN_HEAD") """ Registry for RPN heads, which take feature maps and perform objectness classification and bounding box regression for anchors. """ def build_rpn_head(cfg, input_shape): """ Build an RPN head defined by `cfg.MODEL.RPN.HEAD_NAME`. """ name = cfg.MODEL.RPN.HEAD_NAME return RPN_HEAD_REGISTRY.get(name)(cfg, input_shape) @RPN_HEAD_REGISTRY.register()
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import math from typing import List import torch from torch import nn from fs3c.layers import ShapeSpec from fs3c.structures import Boxes, RotatedBoxes from fs3c.utils.registry import Registry ANCHOR_GENERATOR_REGISTRY = Registry("ANCHOR_GENERATOR") """ Registry for modules that creates object detection anchors for feature maps. """ class BufferList(nn.Module): """ Similar to nn.ParameterList, but for buffers """ def __init__(self, buffers=None): super(BufferList, self).__init__() if buffers is not None: self.extend(buffers) def extend(self, buffers): offset = len(self) for i, buffer in enumerate(buffers): self.register_buffer(str(offset + i), buffer) return self
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from fs3c.layers import ShapeSpec from fs3c.utils.registry import Registry from .backbone import Backbone BACKBONE_REGISTRY = Registry("BACKBONE") BACKBONE_REGISTRY.__doc__ = """ Registry for backbones, which extract feature maps from images The registered object must be a callable that accepts two arguments: 1. A :class:`fs3c.config.CfgNode` 2. A :class:`fs3c.layers.ShapeSpec`, which contains the input shape specification. It must returns an instance of :class:`Backbone`. """ def build_backbone(cfg, input_shape=None): """ Build a backbone from `cfg.MODEL.BACKBONE.NAME`. Returns: an instance of :class:`Backbone` """ if input_shape is None: input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN)) backbone_name = cfg.MODEL.BACKBONE.NAME backbone = BACKBONE_REGISTRY.get(backbone_name)(cfg, input_shape)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from fs3c.utils.registry import Registry META_ARCH_REGISTRY = Registry("META_ARCH") # noqa F401 isort:skip META_ARCH_REGISTRY.__doc__ = """ Registry for meta-architectures, i.e. the whole model. The registered object will be called with `obj(cfg)` and expected to return a `nn.Module` object. """ def build_model(cfg): """ Built the whole model, defined by `cfg.MODEL.META_ARCHITECTURE`. """ meta_arch = cfg.MODEL.META_ARCHITECTURE return META_ARCH_REGISTRY.get(meta_arch)(cfg)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import numpy as np import fvcore.nn.weight_init as weight_init import torch from torch import nn from torch.nn import functional as F from fs3c.layers import Conv2d, ShapeSpec, get_norm from fs3c.utils.registry import Registry ROI_BOX_HEAD_REGISTRY = Registry("ROI_BOX_HEAD") ROI_BOX_HEAD_REGISTRY.__doc__ = """ Registry for box heads, which make box predictions from per-region features. The registered object will be called with `obj(cfg, input_shape)`. """ @ROI_BOX_HEAD_REGISTRY.register() class FastRCNNConvFCHead(nn.Module): """ A head with several 3x3 conv layers (each followed by norm & relu) and several fc layers (each followed by relu). """ def __init__(self, cfg, input_shape: ShapeSpec): """ The following attributes are parsed from config: num_conv, num_fc: the number of conv/fc layers conv_dim/fc_dim: the dimension of the conv/fc layers norm: normalization for the conv layers """
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from fs3c.utils.registry import Registry PROPOSAL_GENERATOR_REGISTRY = Registry("PROPOSAL_GENERATOR") PROPOSAL_GENERATOR_REGISTRY.__doc__ = """ Registry for proposal generator, which produces object proposals from feature maps. The registered object will be called with `obj(cfg, input_shape)`. The call should return a `nn.Module` object. """ from . import rpn # noqa F401 isort:skip def build_proposal_generator(cfg, input_shape): """ Build a proposal generator from `cfg.MODEL.PROPOSAL_GENERATOR.NAME`. The name can be "PrecomputedProposals" to use no proposal generator. """ name = cfg.MODEL.PROPOSAL_GENERATOR.NAME if name == "PrecomputedProposals": return None return PROPOSAL_GENERATOR_REGISTRY.get(name)(cfg, input_shape)