示例#1
0
def test_syntheticFID():
    testFID, hdr = syn.syntheticFID(noisecovariance=[[0.0]], points=16384)

    # Check FID is sum of lorentzian lineshapes
    # anlytical solution
    T2 = 1 / (hdr['inputopts']['damping'][0])
    M0 = hdr['inputopts']['amplitude'][0]
    f0 = hdr['inputopts']['centralfrequency'] * hdr['inputopts'][
        'chemicalshift'][0]
    f1 = hdr['inputopts']['centralfrequency'] * hdr['inputopts'][
        'chemicalshift'][1]
    f = hdr['faxis']
    spec = (M0 * T2) / (1 + 4 * np.pi**2 * (f0 - f)**2 * T2**2) + 1j * (
        2 * np.pi * M0 * (f0 - f) * T2**2) / (1 + 4 * np.pi**2 *
                                              (f0 - f)**2 * T2**2)
    spec += (M0 * T2) / (1 + 4 * np.pi**2 * (f1 - f)**2 * T2**2) + 1j * (
        2 * np.pi * M0 * (f1 - f) * T2**2) / (1 + 4 * np.pi**2 *
                                              (f1 - f)**2 * T2**2)

    # Can't quite get the scaling right here.
    testSpec = FIDToSpec(testFID[0])
    spec /= np.max(np.abs(spec))
    testSpec /= np.max(np.abs(testSpec))

    assert np.isclose(spec, FIDToSpec(testFID[0]), atol=1E-2, rtol=1E0).all()
示例#2
0
def identifyUnlikeFIDs(FIDList,bandwidth,centralFrequency,sdlimit = 1.96,iterations=2,ppmlim=None,shift=True):
    """ Identify FIDs in a list that are unlike the others

    Args:
        FIDList (list of ndarray): Time domain data
        bandwidth (float)        : Bandwidth in Hz
        centralFrequency (float) : Central frequency in Hz
        sdlimit (float,optional) : Exclusion limit (number of stnadard deviations). Default = 3.
        iterations (int,optional): Number of iterations to use.
        ppmlim (tuple,optional)  : Limit to this ppm range
        shift (bool,optional)    : Apply H20 shft

    Returns:
        goodFIDS (list of ndarray): FIDs that passed the criteria
        badFIDS (list of ndarray): FIDs that failed the likeness critera
        rmIndicies (list of int): Indicies of those FIDs that have been removed
        metric (list of floats): Likeness metric of each FID
    """

    # Calculate the FID to compare to
    target = get_target_FID(FIDList,target='median')

    if ppmlim is not None:
        MRSargs = {'FID':target,'bw':bandwidth,'cf':centralFrequency}
        mrs = MRS(**MRSargs)
        target = extract_spectrum(mrs,target,ppmlim=ppmlim,shift=shift)
        compareList = [extract_spectrum(mrs,f,ppmlim=ppmlim,shift=shift) for f in FIDList]
    else:
        compareList = [FIDToSpec(f) for f in FIDList]
        target = FIDToSpec(target)
    
    # Do the comparison    
    for idx in range(iterations):
        metric = []
        for data in compareList:
            metric.append(np.linalg.norm(data-target))            
        metric = np.asarray(metric)
        metric_avg = np.mean(metric)
        metric_std = np.std(metric)

        goodFIDs,badFIDs,rmIndicies,keepIndicies = [],[],[],[]
        for iDx,(data,m) in enumerate(zip(FIDList,metric)):
            if m > ((sdlimit*metric_std)+metric_avg) or m < (-(sdlimit*metric_std)+metric_avg):
                badFIDs.append(data)
                rmIndicies.append(iDx)
            else:
                goodFIDs.append(data)
                keepIndicies.append(iDx)

        target = get_target_FID(goodFIDs,target='median')
        if ppmlim is not None:
            target = extract_spectrum(mrs,target,ppmlim=ppmlim,shift=shift)
        else:
            target = FIDToSpec(target)
    

    return goodFIDs,badFIDs,keepIndicies,rmIndicies,metric.tolist()
示例#3
0
def FSLModel_grad_vb(x, nu, t, m, B, G, g, first, last):
    n = m.shape[1]  # get number of basis functions

    logcon, loggamma, eps, phi0, phi1, b = FSLModel_x2param(x, n, g)
    con = np.exp(logcon)
    gamma = np.exp(loggamma)

    # Start
    E = np.zeros((m.shape[0], g), dtype=np.complex)
    for gg in range(g):
        E[:, gg] = np.exp(-(1j * eps[gg] + gamma[gg]) * t).flatten()

    e_term = np.zeros(m.shape, dtype=np.complex)
    c = np.zeros((con.size, g))
    for i, gg in enumerate(G):
        e_term[:, i] = E[:, gg]
        c[i, gg] = con[i]
    m_term = m * e_term

    phi_term = np.exp(-1j * (phi0 + phi1 * nu))

    Fmet = FIDToSpec(m_term)
    Ftmet = FIDToSpec(t * m_term)
    Ftmetc = Ftmet @ c
    Fmetcon = Fmet @ con[:, None]

    # Forward model
    S = (phi_term * Fmetcon)
    if B is not None:
        S += B @ b[:, None]

    # Gradients
    dSdc = phi_term * Fmet
    dSdgamma = phi_term * (-Ftmetc)
    dSdeps = phi_term * (-1j * Ftmetc)
    dSdphi0 = -1j * phi_term * (Fmetcon)
    dSdphi1 = -1j * nu * phi_term * (Fmetcon)
    dSdb = B

    # Only compute within a range
    dSdc = dSdc[first:last, :]
    dSdgamma = dSdgamma[first:last, :]
    dSdeps = dSdeps[first:last, :]
    dSdphi0 = dSdphi0[first:last]
    dSdphi1 = dSdphi1[first:last]
    dSdb = dSdb[first:last]

    dS = np.concatenate((dSdc * con[None, :], dSdgamma * gamma[None, :],
                         dSdeps, dSdphi0, dSdphi1, dSdb),
                        axis=1)

    dS = np.concatenate((np.real(dS), np.imag(dS)), axis=0)

    return dS
示例#4
0
def FSLModel_forward_vb_voigt(x, nu, t, m, B, G, g, first, last):
    n = m.shape[1]  # get number of basis functions

    logcon, loggamma, logsigma, eps, phi0, phi1, b = FSLModel_x2param_Voigt(
        x, n, g)
    con = np.exp(logcon)
    gamma = np.exp(loggamma)
    sigma = np.exp(logsigma)

    E = np.zeros((m.shape[0], g), dtype=np.complex)
    for gg in range(g):
        E[:, gg] = np.exp(-(1j * eps[gg] + gamma[gg] + t * sigma[gg]**2) *
                          t).flatten()

    tmp = np.zeros(m.shape, dtype=np.complex)
    for i, gg in enumerate(G):
        tmp[:, i] = m[:, i] * E[:, gg]

    M = FIDToSpec(tmp)
    S = np.exp(-1j * (phi0 + phi1 * nu)) * (M @ con[:, None])

    # add baseline
    if B is not None:
        S += B @ b[:, None]

    S = S.flatten()[first:last]

    return np.concatenate((np.real(S), np.imag(S)))
示例#5
0
def FSLModel_forward(x, nu, t, m, B, G, g):
    """
    x = [con[0],...,con[n-1],gamma,eps,phi0,phi1,baselineparams]

    nu : array-like - frequency axis
    t  : array-like - time axis
    m  : basis time course
    B  : baseline functions
    G  : metabolite groups
    g  : number of metab groups

    Returns forward prediction in the frequency domain
    """

    n = m.shape[1]  # get number of basis functions

    con, gamma, eps, phi0, phi1, b = FSLModel_x2param(x, n, g)

    E = np.zeros((m.shape[0], g), dtype=np.complex)
    for gg in range(g):
        E[:, gg] = np.exp(-(1j * eps[gg] + gamma[gg]) * t).flatten()
    # E = np.exp(-(1j*eps+gamma)*t) # THis is actually slower! But maybe more optimisable longterm with numexpr or numba

    tmp = np.zeros(m.shape, dtype=np.complex)
    for i, gg in enumerate(G):
        tmp[:, i] = m[:, i] * E[:, gg]

    M = FIDToSpec(tmp)
    S = np.exp(-1j * (phi0 + phi1 * nu)) * (M @ con[:, None])

    # add baseline
    if B is not None:
        S += B @ b[:, None]

    return S.flatten()
示例#6
0
def FSLModel_forward_Voigt(x, nu, t, m, B, G, g):
    """
    x = [con[0],...,con[n-1],gamma,eps,phi0,phi1,baselineparams]

    nu : array-like - frequency axis
    t  : array-like - time axis
    m  : basis time course
    B  : baseline functions
    G  : metabolite groups
    g  : number of metab groups

    Returns forward prediction in the frequency domain
    """

    n = m.shape[1]  # get number of basis functions

    con, gamma, sigma, eps, phi0, phi1, b = FSLModel_x2param_Voigt(x, n, g)

    E = np.zeros((m.shape[0], g), dtype=np.complex)
    for gg in range(g):
        E[:, gg] = np.exp(-(1j * eps[gg] + gamma[gg] + t * sigma[gg]**2) *
                          t).flatten()

    tmp = np.zeros(m.shape, dtype=np.complex)
    for i, gg in enumerate(G):
        tmp[:, i] = m[:, i] * E[:, gg]

    M = FIDToSpec(tmp, axis=0)
    S = np.exp(-1j * (phi0 + phi1 * nu)) * (M @ con[:, None])

    # add baseline
    if B is not None:
        S += B @ b[:, None]

    return S.flatten()
示例#7
0
    def loadResults(self, mrs, fitResults):
        "Load fitting results and calculate some metrics"
        # Populate data frame
        if fitResults.ndim == 1:
            self.fitResults = pd.DataFrame(data=fitResults[np.newaxis, :],
                                           columns=self.params_names)
        else:
            self.fitResults = pd.DataFrame(data=fitResults,
                                           columns=self.params_names)
        self.params = self.fitResults.mean().values

        #Store prediction, baseline, residual
        self.pred = self.predictedFID(mrs, mode='Full')
        self.baseline = self.predictedFID(mrs, mode='Baseline')
        self.residuals = mrs.FID - self.pred

        # Calculate single point crlb and cov
        first, last = mrs.ppmlim_to_range(self.ppmlim)
        _, _, forward, _, _ = models.getModelFunctions(self.model)
        forward_lim = lambda p: forward(p, mrs.frequencyAxis, mrs.timeAxis, mrs
                                        .basis, self.base_poly, self.
                                        metab_groups, self.g)[first:last]
        data = mrs.getSpectrum(ppmlim=self.ppmlim)
        # self.crlb      = calculate_crlb(self.params,forward_lim,data)
        self.cov = calculate_lap_cov(self.params, forward_lim, data)
        self.crlb = np.diagonal(self.cov)
        std = np.sqrt(self.crlb)
        self.corr = self.cov / (std[:, np.newaxis] * std[np.newaxis, :])
        self.mse = np.mean(np.abs(FIDToSpec(self.residuals)[first:last])**2)

        with np.errstate(divide='ignore', invalid='ignore'):
            self.perc_SD = np.sqrt(self.crlb) / self.params * 100
        self.perc_SD[self.perc_SD > 999] = 999  # Like LCModel :)
        self.perc_SD[np.isnan(self.perc_SD)] = 999

        # Calculate mcmc metrics
        if self.method == 'MH':
            self.mcmc_cov = self.fitResults.cov().values
            self.mcmc_cor = self.fitResults.corr().values
            self.mcmc_var = self.fitResults.var().values
            self.mcmc_samples = self.fitResults.values

        # VB metrics
        if self.method == 'VB':
            self.vb_cov = self.optim_out.cov
            self.vb_var = self.optim_out.var
            std = np.sqrt(self.vb_var)
            self.vb_corr = self.vb_cov / (std[:, np.newaxis] *
                                          std[np.newaxis, :])

        self.hzperppm = mrs.centralFrequency / 1E6

        # Calculate QC metrics
        self.FWHM, self.SNR = qc.calcQC(mrs, self, ppmlim=(0.2, 4.2))

        # Run relative concentration scaling to tCr in 'default' 1H MRS case. Create combined metab at same time to avoid later errors.
        if (('Cr' in self.metabs) and ('PCr' in self.metabs)):
            self.combine([['Cr', 'PCr']])
            self.calculateConcScaling(mrs)
示例#8
0
def calculate_area(mrs, FID, ppmlim=None):
    """
        Calculate area of the real part of the spectrum between two limits
    """
    Spec = FIDToSpec(FID, axis=0)
    if ppmlim is not None:
        first, last = mrs.ppmlim_to_range(ppmlim)
        Spec = Spec[first:last]
    area = np.trapz(np.real(Spec), axis=0)
    return area
示例#9
0
def test_freqshift():
    testFID, testHdrs = syn.syntheticFID(amplitude=[0.0, 1.0
                                                    ])  # Single peak at 3 ppm
    # Shift to 0 ppm
    dt = 1 / testHdrs['inputopts']['bandwidth']
    shift = testHdrs['inputopts']['centralfrequency'] * -3.0
    shiftedFID = preproc.freqshift(testFID[0], dt, shift)

    maxindex = np.argmax(np.abs(FIDToSpec(shiftedFID)))
    freqOfMax = testHdrs['faxis'][maxindex]

    assert freqOfMax < 5 and freqOfMax > -5
示例#10
0
文件: qc.py 项目: alexcraven/fsl_mrs
def calcQC(mrs, res, ppmlim=(0.2, 4.2)):
    """ Calculate SNR and FWHM on fitted data

    """
    if res.method == 'MH':
        MCMCUsed = True
    else:
        MCMCUsed = False

    try:
        if MCMCUsed:
            # Loop over the individual MH results
            fwhm = []
            snrPeaks = []
            for _, rp in res.fitResults.iterrows():
                qcres = calcQCOnResults(mrs, res, rp, ppmlim)
                snrPeaks.append(qcres[0])
                fwhm.append(qcres[1])
            snrSpec = qcres[2]
            fwhm = np.asarray(fwhm).T
            snrPeaks = np.asarray(snrPeaks).T
        else:
            # Pass the single Newton results
            snrPeaks, fwhm, snrSpec = calcQCOnResults(mrs, res, res.params,
                                                      ppmlim)
            fwhm = np.asarray(fwhm)
            snrPeaks = np.asarray(snrPeaks)
    except NoiseNotFoundError:
        outShape = (len(res.metabs), res.fitResults.shape[0])
        fwhm = np.full(outShape, np.nan)
        snrSpec = np.nan
        snrPeaks = np.full(outShape, np.nan)

    # Calculate the LCModel style SNR based on peak height over SD of residual
    first, last = mrs.ppmlim_to_range(ppmlim=res.ppmlim)
    baseline = FIDToSpec(res.predictedFID(mrs, mode='baseline'))[first:last]
    spectrumMinusBaseline = mrs.getSpectrum(ppmlim=res.ppmlim) - baseline
    snrResidual_height = np.max(np.real(spectrumMinusBaseline))
    rmse = 2.0 * np.sqrt(res.mse)
    snrResidual = snrResidual_height / rmse

    # Assemble outputs
    # SNR output
    snrdf = pd.DataFrame()
    for m, snr in zip(res.metabs, snrPeaks):
        snrdf[f'SNR_{m}'] = pd.Series(snr)
    SNRobj = SNR(spectrum=snrSpec, peaks=snrdf, residual=snrResidual)

    fwhmdf = pd.DataFrame()
    for m, width in zip(res.metabs, fwhm):
        fwhmdf[f'fwhm_{m}'] = pd.Series(width)

    return fwhmdf, SNRobj
示例#11
0
def test_phase_freq_align():

    peak1Shift = np.random.rand(10) * 0.1
    peak1Phs = np.random.randn(10) * 2 * np.pi
    shiftedFIDs = []
    for s, p in zip(peak1Shift, peak1Phs):
        testFIDs, testHdrs = syn.syntheticFID(amplitude=[1, 1],
                                              chemicalshift=[-2 + s, 3],
                                              phase=[p, 0.0],
                                              points=2048,
                                              noisecovariance=[[1E-1]])
        shiftedFIDs.append(testFIDs[0])

    # Align across shifted peak
    alignedFIDs, _, _ = preproc.phase_freq_align(shiftedFIDs,
                                                 testHdrs['bandwidth'],
                                                 testHdrs['centralFrequency'] *
                                                 1E6,
                                                 niter=2,
                                                 verbose=False,
                                                 ppmlim=(-2.2, -1.7),
                                                 shift=False)

    meanFID = preproc.combine_FIDs(alignedFIDs, 'mean')
    assert np.max(np.abs(FIDToSpec(meanFID))) > 0.09

    # Align across fixed peak
    alignedFIDs, _, _ = preproc.phase_freq_align(shiftedFIDs,
                                                 testHdrs['bandwidth'],
                                                 testHdrs['centralFrequency'] *
                                                 1E6,
                                                 niter=2,
                                                 verbose=False,
                                                 ppmlim=(2, 4),
                                                 shift=False)

    meanFID = preproc.combine_FIDs(alignedFIDs, 'mean')
    assert np.max(np.abs(FIDToSpec(meanFID))) > 0.09
示例#12
0
def plot_fit_new(mrs, ppmlim=(0.40, 4.2)):
    """
        plot model fitting plus baseline
        
        mrs : MRS object
        ppmlim : tuple
    """
    axis = np.flipud(mrs.ppmAxisFlip)
    spec = np.flipud(np.fft.fftshift(mrs.Spec))
    pred = FIDToSpec(mrs.pred)
    pred = np.flipud(np.fft.fftshift(pred))

    if mrs.baseline is not None:
        B = np.flipud(np.fft.fftshift(mrs.baseline))

    first = np.argmin(np.abs(axis - ppmlim[0]))
    last = np.argmin(np.abs(axis - ppmlim[1]))
    if first > last:
        first, last = last, first
    freq = axis[first:last]

    plt.figure(figsize=(9, 10))
    plt.plot(axis[first:last], spec[first:last])
    plt.gca().invert_xaxis()
    plt.plot(axis[first:last], pred[first:last], 'r')
    if mrs.baseline is not None:
        plt.plot(axis[first:last], B[first:last], 'k')

    # style stuff
    plt.minorticks_on()
    plt.grid(b=True,
             axis='x',
             which='major',
             color='k',
             linestyle='--',
             linewidth=.3)
    plt.grid(b=True,
             axis='x',
             which='minor',
             color='k',
             linestyle=':',
             linewidth=.3)

    return plt.gcf()
示例#13
0
def FSLModel_transform_basis(x, nu, t, m, G, g):
    """
       Transform basis by applying frequency shifting/blurring
    """
    n = m.shape[1]  # get number of basis functions

    con, gamma, eps, phi0, phi1, b = FSLModel_x2param(x, n, g)

    E = np.zeros((m.shape[0], g), dtype=np.complex)
    for gg in range(g):
        E[:, gg] = np.exp(-(1j * eps[gg] + gamma[gg]) * t).flatten()

    tmp = np.zeros(m.shape, dtype=np.complex)
    for i, gg in enumerate(G):
        tmp[:, i] = m[:, i] * E[:, gg]

    M = FIDToSpec(tmp)

    return SpecToFID(np.exp(-1j * (phi0 + phi1 * nu)) * M)
示例#14
0
文件: qc.py 项目: alexcraven/fsl_mrs
def specApodise(mrs, amount):
    """ Apply apodisation to spectrum"""
    FIDApod = mrs.FID * np.exp(-amount * mrs.getAxes('time'))
    return FIDToSpec(FIDApod)
示例#15
0
def syntheticFromBasis(basis,
                       basis_bandwidth,
                       concentrations,
                       broadening=(9.0, 0.0),
                       shifting=0.0,
                       baseline=[0, 0],
                       coilamps=[1.0],
                       coilphase=[0.0],
                       noisecovariance=[[0.1]],
                       bandwidth=4000.0,
                       points=2048):
    """ Create synthetic spectra from basis FIDs. Use syntheticFromBasisFile interface."""
    # sort out inputs
    numMetabs = basis.shape[1]
    if len(concentrations) != numMetabs:
        raise ValueError('Provide a concentration for each basis spectrum.')

    if isinstance(broadening, list):
        if len(broadening) != numMetabs:
            raise ValueError(
                'Broadening values must be either a single tuple or list of tuples with the same number of elements as basis sets.'
            )
        gammas = [b[0] for b in broadening]
        sigmas = [b[1] for b in broadening]
    elif isinstance(broadening, tuple):
        gammas = [broadening[0]] * numMetabs
        sigmas = [broadening[1]] * numMetabs
    else:
        raise ValueError(
            'Broadening values must be either a single tuple or list of tuples with the same number of elements as basis sets.'
        )

    if isinstance(shifting, list):
        if len(shifting) != numMetabs:
            raise ValueError(
                'shifting values must be either a float or list with the same number of elements as basis sets.'
            )
        eps = shifting
    elif isinstance(shifting, float):
        eps = [shifting] * numMetabs
    else:
        raise ValueError(
            'shifting values must be either a float or list with the same number of elements as basis sets.'
        )

    # Form noise vectors
    ncoils = len(coilamps)
    noisecovariance = np.asarray(noisecovariance)
    if len(coilphase) != ncoils:
        raise ValueError('Length of coilamps and coilphase must match.')
    if noisecovariance.shape != (ncoils, ncoils):
        raise ValueError('noisecovariance must be ncoils x ncoils.')

    noise = np.random.multivariate_normal(
        np.zeros((ncoils)), noisecovariance,
        points) + 1j * np.random.multivariate_normal(np.zeros(
            (ncoils)), noisecovariance, points)

    # Interpolate basis
    dwelltime = 1 / bandwidth
    basis_dwelltime = 1 / basis_bandwidth
    basis = ts_to_ts(basis, basis_dwelltime, dwelltime, points)
    # basis = rescale_FID(basis,scale=100)

    # Create the spectrum
    baseFID = np.zeros((points), np.complex128)
    dwellTime = 1 / bandwidth
    timeAxis = np.linspace(dwellTime, dwellTime * points, points)
    for b, c, e, g, s in zip(basis.T, concentrations, eps, gammas, sigmas):
        tmp = b * np.exp(-(1j * e + g + timeAxis * s**2) * timeAxis)
        M = FIDToSpec(tmp)
        baseFID += SpecToFID(M * c)

    # Add baseline
    # TO DO

    # Add noise and write tot output list
    FIDs = []
    for cDx, (camp, cphs) in enumerate(zip(coilamps, coilphase)):
        FIDs.append((camp * np.exp(1j * cphs) * baseFID) + noise[:, cDx])
    FIDs = np.asarray(FIDs).T
    FIDs = np.squeeze(FIDs)

    return FIDs
示例#16
0
def FID2Spec(x):
    """
       Turn FID to spectrum for plotting
    """
    x = FIDToSpec(x)
    return x
示例#17
0
def plot_spectrum(mrs, ppmlim=(0.0, 4.5), FID=None, proj='real', c='k'):
    """
       Plotting the spectrum 
       ----------
       FID    : array-like
       bandwidth : float (unit = Hz)
       centralFrequency : float (unit = Hz)
       ppmlim : tuple
              (MIN,MAX)
       proj   : string
              one of 'real', 'imag', 'abs', or 'angle'

    """

    ppmAxisShift = mrs.getAxes(ppmlim=ppmlim)

    def axes_style(plt, ppmlim, label=None, xticks=None):
        plt.xlim(ppmlim)
        plt.gca().invert_xaxis()
        plt.xlabel(label)
        plt.gca().set_xticks(xticks)
        plt.minorticks_on()
        plt.grid(b=True,
                 axis='x',
                 which='major',
                 color='k',
                 linestyle='--',
                 linewidth=.3)
        plt.grid(b=True,
                 axis='x',
                 which='minor',
                 color='k',
                 linestyle=':',
                 linewidth=.3)

    def doPlot(data, c='b', linewidth=1, linestyle='-', xticks=None):
        plt.plot(ppmAxisShift,
                 data,
                 color=c,
                 linewidth=linewidth,
                 linestyle=linestyle)
        axes_style(plt, ppmlim, label='Chemical shift (ppm)', xticks=xticks)

    # Prepare data for plotting
    if FID is not None:
        f, l = mrs.ppmlim_to_range(ppmlim)
        data = FIDToSpec(FID)[f:l]
    else:
        data = mrs.getSpectrum(ppmlim=ppmlim)

    #m = min(np.real(data))
    #M = max(np.real(data))
    #ylim   = (m-np.abs(M)/10,M+np.abs(M)/10)
    #plt.ylim(ylim)

    # Create the figure
    #plt.figure(figsize=(7,7))
    # Some nicer x ticks on the plots
    if np.abs(ppmlim[1] - ppmlim[0]) > 2:
        xticks = np.arange(np.ceil(ppmlim[0]), np.floor(ppmlim[1]) + 0.1, 1.0)
    else:
        xticks = np.arange(np.around(ppmlim[0], 1),
                           np.around(ppmlim[1], 1) + 0.01, 0.1)

    exec("doPlot(np.{}(data),c='{}'      ,linewidth=2,xticks=xticks)".format(
        proj, c))

    plt.tight_layout()
    return plt.gcf()
示例#18
0
def FSLModel_grad_Voigt(x, nu, t, m, B, G, g, data, first, last):
    """
    x = [con[0],...,con[n-1],gamma,eps,phi0,phi1,baselineparams]

    nu : array-like - frequency axis
    t  : array-like - time axis
    m  : basis time course
    B  : baseline functions
    G  : metabolite groups
    g  : number of metab groups
    data : array like - frequency domain data
    first,last : range for the fitting is data[first:last]     

    returns gradient vector
    """
    n = m.shape[1]  # get number of basis functions
    #g     = max(G)+1       # get number of metabolite groups

    con, gamma, sigma, eps, phi0, phi1, b = FSLModel_x2param_Voigt(x, n, g)

    # Start
    E = np.zeros((m.shape[0], g), dtype=np.complex)
    SIG = np.zeros((m.shape[0], g), dtype=np.complex)
    for gg in range(g):
        E[:, gg] = np.exp(-(1j * eps[gg] + gamma[gg] + t * sigma[gg]**2) *
                          t).flatten()
        SIG[:, gg] = sigma[gg]

    e_term = np.zeros(m.shape, dtype=np.complex)
    sig_term = np.zeros(m.shape, dtype=np.complex)
    c = np.zeros((con.size, g))
    for i, gg in enumerate(G):
        e_term[:, i] = E[:, gg]
        sig_term[:, i] = SIG[:, gg]
        c[i, gg] = con[i]
    m_term = m * e_term

    phi_term = np.exp(-1j * (phi0 + phi1 * nu))
    Fmet = FIDToSpec(m_term)
    Ftmet = FIDToSpec(t * m_term)
    Ft2sigmet = FIDToSpec(t * t * sig_term * m_term)
    Ftmetc = Ftmet @ c
    Ft2sigmetc = Ft2sigmet @ c
    Fmetcon = Fmet @ con[:, None]

    Spec = data[first:last, None]

    # Forward model
    S = (phi_term * Fmetcon)
    if B is not None:
        S += B @ b[:, None]

    # Gradients
    dSdc = phi_term * Fmet
    dSdgamma = phi_term * (-Ftmetc)
    dSdsigma = phi_term * (-2 * Ft2sigmetc)
    dSdeps = phi_term * (-1j * Ftmetc)
    dSdphi0 = -1j * phi_term * (Fmetcon)
    dSdphi1 = -1j * nu * phi_term * (Fmetcon)
    dSdb = B

    # Only compute within a range
    S = S[first:last]
    dSdc = dSdc[first:last, :]
    dSdgamma = dSdgamma[first:last, :]
    dSdsigma = dSdsigma[first:last, :]
    dSdeps = dSdeps[first:last, :]
    dSdphi0 = dSdphi0[first:last]
    dSdphi1 = dSdphi1[first:last]
    dSdb = dSdb[first:last]

    dS = np.concatenate(
        (dSdc, dSdgamma, dSdsigma, dSdeps, dSdphi0, dSdphi1, dSdb), axis=1)

    grad = np.real(
        np.sum(S * np.conj(dS) + np.conj(S) * dS - np.conj(Spec) * dS -
               Spec * np.conj(dS),
               axis=0))

    return grad