示例#1
0
def get_stream(batch_size, source_window=4000, target_window=1000, num_examples=5000):
    from fuel.datasets.youtube_audio import YouTubeAudio
    data = YouTubeAudio('XqaJ2Ol5cC4')
    train_stream = data.get_example_stream()
    train_stream = ForceFloatX(train_stream)
    window_stream = Window(0,source_window, target_window, overlapping=False, data_stream=train_stream)
    source_stream = FilterSources(window_stream, sources=('features',))
    feats_stream = Mapping(source_stream, mfcc)
    targets_stream = FilterSources(window_stream, sources=('targets',))
    targets_stream = Flatten(targets_stream)
    stream = Merge((feats_stream,targets_stream), sources = ('features','targets'))
    #Add a random Scheme?
    it_scheme = ConstantScheme(batch_size,num_examples)
    batched_stream = Batch(stream, it_scheme, strictness=1)
    return batched_stream
示例#2
0
def get_stream(batch_size,
               source_window=4000,
               target_window=1000,
               num_examples=5000):
    from fuel.datasets.youtube_audio import YouTubeAudio
    data = YouTubeAudio('XqaJ2Ol5cC4')
    train_stream = data.get_example_stream()
    train_stream = ForceFloatX(train_stream)
    window_stream = Window(0,
                           source_window,
                           target_window,
                           overlapping=False,
                           data_stream=train_stream)
    source_stream = FilterSources(window_stream, sources=('features', ))
    feats_stream = Mapping(source_stream, mfcc)
    targets_stream = FilterSources(window_stream, sources=('targets', ))
    targets_stream = Flatten(targets_stream)
    stream = Merge((feats_stream, targets_stream),
                   sources=('features', 'targets'))
    #Add a random Scheme?
    it_scheme = ConstantScheme(batch_size, num_examples)
    batched_stream = Batch(stream, it_scheme, strictness=1)
    return batched_stream
from fuel.datasets.youtube_audio import YouTubeAudio
import matplotlib.pyplot as plt
import numpy as np
import scipy.io.wavfile
from random import randint


amp = 10000.

data        = YouTubeAudio('XqaJ2Ol5cC4')
stream      = data.get_example_stream()
it          = stream.get_epoch_iterator()
track       = next(it)
track       = track[0].reshape(-1)
track       = track/amp
sample_rate = scipy.io.wavfile.read("/home/alex/fuel_data/XqaJ2Ol5cC4.wav")[0]
total_len   = track.shape[0]

#input shape is expected to be 
#(batch_size, sequence_length, num_inputs)
secs        = 0.75
num_inputs  = int(sample_rate*secs)
seq_len     = 20
example     = seq_len*num_inputs


#Setting appropriate length to account for the size of an example
train_len   = total_len*8/10/example*example
valid_len   = (total_len-train_len)/2/example*example
test_len    = (total_len-train_len)/2/example*example
unused      = total_len - train_len - valid_len - test_len
示例#4
0
def get_sound(name):
    data = YouTubeAudio(name)
    stream = data.get_example_stream()
    it = stream.get_epoch_iterator()
    return next(it)[0][:, 0]
示例#5
0
def get_sound(name):
    data = YouTubeAudio(name)
    stream = data.get_example_stream()
    it = stream.get_epoch_iterator()
    return next(it)[0][:, 0]