# number of nodes from center of particle (m=0) to surface (m)
m = 1000

# time vector from 0 to max time
tmax = 4.0                      # max time, s
nt = 400                        # number of time steps
dt = tmax/nt                    # time step, s
t = np.arange(0, tmax+dt, dt)   # time vector, s

# temperatures using d
# row = time step, column = node point from 0 (center) to m (surface)
T_sphere1d = hc3(d, cp, k, Gb, h, Ti, Tinf, 2, m, t)    # array of temperatues, K

# volume average temperature at each time step based on d
vs = vol(d, m)
Tv_sphere1d = Tvol(T_sphere1d, vs)

# temperatures using dsv
# row = time step, column = node point from 0 (center) to m (surface)
dsv_sphere = dsv(SAsph, Vsph)
T_sphere1dsv = hc3(dsv_sphere, cp, k, Gb, h, Ti, Tinf, 2, m, t)

vs_dsv = vol(dsv_sphere, m)
Tv_sphere1dsv = Tvol(T_sphere1dsv, vs_dsv)

# 1-D Transient Heat Conduction Method in Solid Cube
# -----------------------------------------------------------------------------

# volume average temperatures
dsv_cube = dsv(SAcube, Vcube)  # cube
示例#2
0
# time vector from 0 to max time
tmax = 0.8  # max time, s
nt = 1000  # number of time steps
dt = tmax / nt  # time step, s
t = np.arange(0, tmax + dt, dt)  # time vector, s

# intraparticle temperature array [T] in Kelvin
# row = time step, column = node point from 0 to m
Ts = hc2(ds, x, k, Gb, h, Ti, Tinf, 2, m, t)  # ds case, b = 2 for sphere
Tv = hc2(dv, x, k, Gb, h, Ti, Tinf, 2, m, t)  # dv case, b = 2 for sphere
Tsv = hc2(dsv, x, k, Gb, h, Ti, Tinf, 2, m, t)  # dsv case, b = 2 for sphere
Tc = hc2(dc, x, k, Gb, h, Ti, Tinf, 2, m, t)  # dc case, b = 2 for sphere

# volume average temperatures
v = vol(ds, m)  # volumes in the sphere
Ts_vol = Tvol(Ts, v)  # ds volume average temperature profile
Tv_vol = Tvol(Tv, v)  # dv volume average temperature profile
Tsv_vol = Tvol(Tsv, v)  # dsv volume average temperature profile
Tc_vol = Tvol(Tc, v)  # dc volume average temperature profile

# grab data from text file
txtfile = 'comsol/200tempsPine.txt'
t2, Tv, Tst, Tc, Tl, Tw, Tsa = np.loadtxt(txtfile, skiprows=5, unpack=True)

# Plot Results
# -----------------------------------------------------------------------------

py.ion()
py.close('all')
示例#3
0
tmax2 = 20.0                    # max time for large particles, s
t2 = np.arange(0, tmax2+dt, dt) # time vector for large particles, s

# 1-D Transient Heat Conduction for DF = 200 um
# -----------------------------------------------------------------------------

# surface area to volume equivalent sphere diameter Dsv, m
dsv200 = dsv(sa200, v200)

# intraparticle temperature array [T] in Kelvin for Dsv case, b = 2 for sphere
# row = time step, column = node point from 0 to m
Tsv200 = hc2(dsv200, x, k, Gb, h, Ti, Tinf, 2, m, t)

# volume average temperature at each time step
vol200 = vol(dsv200, m)         # volumes in the sphere
Tvol200 = Tvol(Tsv200, vol200)  # Dsv volume average temperature profile

# 1-D Transient Heat Conduction for DF = 400 um
# -----------------------------------------------------------------------------

# surface area to volume equivalent sphere diameter Dsv, m
dsv400 = dsv(sa400, v400)

# intraparticle temperature array [T] in Kelvin for Dsv case, b = 2 for sphere
# row = time step, column = node point from 0 to m
Tsv400 = hc2(dsv400, x, k, Gb, h, Ti, Tinf, 2, m, t)

# volume average temperature at each time step
vol400 = vol(dsv400, m)         # volumes in the sphere
Tvol400 = Tvol(Tsv400, vol400)  # Dsv volume average temperature profile
示例#4
0
nt = 1000                       # number of time steps
dt = tmax/nt                    # time step, s
t = np.arange(0, tmax+dt, dt)   # time vector, s

# intraparticle temperature array [T] in Kelvin
# row = time step, column = node point from 0 to m
Ts = hc2(ds, x, k, Gb, h, Ti, Tinf, 2, m, t)   # ds case, b = 2 for sphere
Tv = hc2(dv, x, k, Gb, h, Ti, Tinf, 2, m, t)   # dv case, b = 2 for sphere
Tsv = hc2(dsv, x, k, Gb, h, Ti, Tinf, 2, m, t) # dsv case, b = 2 for sphere
Tc = hc2(dc, x, k, Gb, h, Ti, Tinf, 2, m, t)   # dc case, b = 2 for sphere
Th = hc2(dh, x, k, Gb, h, Ti, Tinf, 2, m, t)   # dh case, b = 2 for sphere
Tw = hc2(dw, x, k, Gb, h, Ti, Tinf, 2, m, t)   # dw case, b = 2 for sphere
Tl = hc2(dl, x, k, Gb, h, Ti, Tinf, 2, m, t)   # dl case, b = 2 for sphere

# volume average temperatures
Vs = vol(ds, m)          # volumes in the sphere
Ts_vol = Tvol(Ts, Vs)    # ds volume average temperature profile

Vv = vol(dv, m)
Tv_vol = Tvol(Tv, Vv)    # dv volume average temperature profile

Vsv = vol(dsv, m)
Tsv_vol = Tvol(Tsv, Vsv)  # dsv volume average temperature profile

Vc = vol(dc, m)
Tc_vol = Tvol(Tc, Vc)    # dc volume average temperature profile

Vh = vol(dh, m)
Th_vol = Tvol(Th, Vh)    # dh volume average temperature profile

Vw = vol(dw, m)
nt = 1000                       # number of time steps
dt = tmax/nt                    # time step, s
t = np.arange(0, tmax+dt, dt)   # time vector, s

# intraparticle temperature array [T] in Kelvin
# row = time step, column = node point from 0 to m
Ts = hc2(ds, x, k, Gb, h, Ti, Tinf, 2, m, t)   # ds case, b = 2 for sphere
Tv = hc2(dv, x, k, Gb, h, Ti, Tinf, 2, m, t)   # dv case, b = 2 for sphere
Tsv = hc2(dsv, x, k, Gb, h, Ti, Tinf, 2, m, t) # dsv case, b = 2 for sphere
Tc = hc2(dc, x, k, Gb, h, Ti, Tinf, 2, m, t)   # dc case, b = 2 for sphere
Th = hc2(dh, x, k, Gb, h, Ti, Tinf, 2, m, t)   # dh case, b = 2 for sphere
Tw = hc2(dw, x, k, Gb, h, Ti, Tinf, 2, m, t)   # dw case, b = 2 for sphere
Tl = hc2(dl, x, k, Gb, h, Ti, Tinf, 2, m, t)   # dl case, b = 2 for sphere

# volume average temperatures
v = vol(ds, m)          # volumes in the sphere
Ts_vol = Tvol(Ts, v)    # ds volume average temperature profile
Tv_vol = Tvol(Tv, v)    # dv volume average temperature profile
Tsv_vol = Tvol(Tsv, v)  # dsv volume average temperature profile
Tc_vol = Tvol(Tc, v)    # dc volume average temperature profile
Th_vol = Tvol(Th, v)    # dh volume average temperature profile
Tw_vol = Tvol(Tw, v)    # dw volume average temperature profile
Tl_vol = Tvol(Tl, v)    # dl volume average temperature profile

# grab data from text file
txtfile = 'comsol/20000tempsPine.txt'
t2, Tv, Tst, Tc, Tl, Tw, Tsa = np.loadtxt(txtfile, skiprows=5, unpack=True)

# Plot Results
# -----------------------------------------------------------------------------
# number of nodes from center of particle (m=0) to surface (m)
m = 1000

# time vector from 0 to max time
tmax = 4.0  # max time, s
dt = 0.01  # time step, s
nt = tmax / dt  # number of time steps
t = np.arange(0, tmax + dt, dt)  # time vector, s

# intraparticle temperature array [T] in Kelvin
# row = time step, column = node point from 0 (center) to m (surface)
T = hc3(d, cp, k, Gb, h, Ti, Tinf, 2, m, t)
Tavg = [np.mean(row) for row in T]

# volume average temperature at each time step
v = vol(d, m)
Tv = Tvol(T, v)

# 1D Analytical Solution for Transient Heat Conduction in Solid Sphere
# -----------------------------------------------------------------------------

ro = d / 2  # radius of sphere (a.k.a outer radius), m
rs = ro / ro  # dimensionless surface radius, (-)
rc = 1e-12 / ro  # dimensionless center radius, (-)

z = np.arange(0, 1250, 0.1)  # range to evaluate the zeta, Bi equation
z[0] = 1e-12  # prevent divide by zero warning

rho = Gb * 1000  # density, kg/m^3
alpha = k / (rho * cp)  # thermal diffusivity biomass, m^2/s
Bi = (h * ro) / k  # Biot number, (-)
示例#7
0
# 1D Transient Heat Conduction
# ------------------------------------------------------------------------------

# surface area, volume, and dsv for each particle size
ds = (sa / np.pi)**(1 / 2)  # surface area equivalent sphere diameter, m
dv = (6 / np.pi * v)**(1 / 3)  # volume equivalent sphere diameter, m
dsv = (dv**3) / (ds**2)  # surface area to volume sphere diameter, m

# calculate temp profiles as Tsv in each particle as based on Dsv where
# row = time step, column = center to surface temperature
# determine center volume and shell volumes as v
# calculate volume averaged temperature of particle at each time step as Tsv_v
T = hc2(dsv, x, k, Gb, h, Ti, Tinf, 2, m, t)  # temperature array, K

rad = np.linspace(0, dsv / 2, m)  # radius vector from center to surface, m
v = vol(rad)  # volumes in particle vector, m^3
Tv = Tvol(T, v)  # volume average temperatures vector, K

# Plot Results
# ------------------------------------------------------------------------------

py.ion()
py.close('all')


def despine():
    ax = py.gca()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    py.tick_params(axis='both',
                   bottom='off',
示例#8
0
# number of nodes from center of particle (m=0) to surface (m)
m = 1000

# time vector from 0 to max time
tmax = 4.0  # max time, s
nt = 400  # number of time steps
dt = tmax / nt  # time step, s
t = np.arange(0, tmax + dt, dt)  # time vector, s

# temperatures using d
# row = time step, column = node point from 0 (center) to m (surface)
T_sphere1d = hc3(d, cp, k, Gb, h, Ti, Tinf, 2, m, t)  # array of temperatues, K

# volume average temperature at each time step based on d
vs = vol(d, m)
Tv_sphere1d = Tvol(T_sphere1d, vs)

# temperatures using dsv
# row = time step, column = node point from 0 (center) to m (surface)
dsv_sphere = dsv(SAsph, Vsph)
T_sphere1dsv = hc3(dsv_sphere, cp, k, Gb, h, Ti, Tinf, 2, m, t)

vs_dsv = vol(dsv_sphere, m)
Tv_sphere1dsv = Tvol(T_sphere1dsv, vs_dsv)

# 1-D Transient Heat Conduction Method in Solid Cube
# -----------------------------------------------------------------------------

# volume average temperatures
dsv_cube = dsv(SAcube, Vcube)  # cube