def get_score(data): target = 'label' feature = [x for x in data.columns if x not in [target, 'id']] score_list = [] for i in range(5): x_train, x_test, y_train, y_test = train_test_split(data[feature], data[target], test_size=0.4, random_state=1) pred_proba_gdt = 0 pred_proba_xgb = 0 pred_proba_rf = 0 # ff = [] for i in range(5): pred_proba_gdt += learn(x_train, y_train, x_test, i, 'GDBT')[1] pred_proba_xgb += learn(x_train, y_train, x_test, i, 'XGB')[1] pred_proba_rf += learn(x_train, y_train, x_test, i, 'RF') pred_proba = pred_proba_gdt + pred_proba_rf * 1.5 + pred_proba_xgb * 2.0 pred_max = np.max(pred_proba, axis=1) zipa = zip(*pred_proba) zz = pd.DataFrame() zz['max'] = pred_max zz['p0'] = (zipa[0] / zz['max']).astype('int') * 0 zz['p1000'] = (zipa[1] / zz['max']).astype('int') * 1000 zz['p1500'] = (zipa[2] / zz['max']).astype('int') * 1500 zz['p2000'] = (zipa[3] / zz['max']).astype('int') * 2000 zz['label'] = zz['p0'] + zz['p1000'] + zz['p1500'] + zz['p2000'] pred = zz['label'].values score = f1(pred, y_test) print 'final_score : ' + str(i), score score_list.append(score) return score_list
#!/usr/bin/env python import function function.f1("F")
import pygame from function import f1, f2, f3, f4, display_w, display_h import numpy as np import sys intercept = np.load('stieber_scenario_4.npy') #intercept = intercept * 2 #intercept = None img_w = 10 img_h = 10 no_of_crumbs = 50 x = np.linspace(0, display_w - 350, no_of_crumbs) y_s = [f1(x), f2(x), f3(x), f4(x)] if len(sys.argv) > 1: y = y_s[int(sys.argv[1])] else: y = y_s[0] black = (0, 0, 0) white = (255, 255, 255) gameDisplay = pygame.display.set_mode((display_w, display_h)) pygame.display.set_caption('Interception') clock = pygame.time.Clock() gameExit = False house_img = pygame.image.load('house.jpg') hansel_gretel_img = pygame.image.load('h_g.jpg') witch_img = pygame.image.load('game_over.jpg')
from function import extended_rosenbrock_function as f1 from project_messy import extended_rosenbrock_function as f2 from function import extender_powell_singular_function as g1 from project_messy import extender_powell_singular_function as g2 from function import gradient_erf as grad_f1 from function import gradient_epsf as grad_g1 from project_messy import gradient eps = 1e-6 number = 100 test_points = np.random.normal(scale=1, size=(number, 4)) # test extended_rosenbrock_function error = 0 for point in test_points: if np.linalg.norm(f1(point) - f2(point)) > eps: error += 1 if error == 0: print "---- function 1 pass test ----" else: print error # test extender_powell_singular_function error = 0 for point in test_points: if np.linalg.norm(g1(point) - g2(point)) > eps: error += 1 if error == 0: print "---- function 2 pass test ----"
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import function #导入function模块,也就是以function命名的py文件,里面定义了多种函数 直接function.name(arg0...)引用 print(function.my_abs(2)) p = function.move(2, 3, 4, 2) print(p[0], p[1]) print(function.quadratic(4, 9, 0)) function.f1(1, 2, 8) l = [8, 88] function.f2(*l) #function.f2(1,2,*l) d = {'city': 'B', 'gender': 'M', 'address': 'C'} function.f3(1, 2, **d) #传入参数时只是对d的一份拷贝,函数中对dict类型修改不影响d #function.f3(1,2,city='Beijing') function.f4(1, 2, city='d', gender='M') function.f5(1, 2, **d) #当传入**d然后从中取出 city gender对应的值,剩下的在给d function.f5(*l, **d) #对于任意函数,都可以通过类似func(*args, **kw)的形式调用它 print(function.product(8)) print(function.fact(100)) print(function.moveH(3, 'A', 'B', 'C'))