def train_daily():

    trainloader, train_x, train_y, validation_x, validation_y, test_x, test_y, \
    train_x_mean, train_x_std, train_y_mean, train_y_std = dataset_generate_daily()

    """         training start!         """
    # determine optimizer, loss_function and checkpoint path
    model = Net(feature_num)
    learning_r = 0.0002
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_r)
    loss_fun = torch.nn.MSELoss()
    path = 'checkpoint_0801.tar'

    """ if you want train your model from a pre-trained model, uncomment the following code. """
    # checkpoint = torch.load(path)
    # model.load_state_dict(checkpoint['net'])
    # optimizer.load_state_dict(checkpoint['optimizer'])
    # validation_loss = checkpoint['best_validation_loss']
    # learning_r = 6.400000000000004e-8

    model.train()
    # val_loss_info = [validation_loss]
    val_loss_info = []      # preserve every epoch's train loss
    train_loss_info = []    # preserve every epoch's validation loss
    not_improve = 0
    for epoch in range(1500):
        for i, values in enumerate(trainloader):
            input, lable = values
            output = model(input.float())
            loss = loss_fun(output, lable)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        if epoch % 10 == 0 and epoch > 0:
            train_loss = loss_fun(model(train_x),train_y).item()
            vali_loss = loss_fun(model(validation_x), validation_y).item()
            if len(val_loss_info) == 0 or vali_loss < min(val_loss_info):  # save the best model
                not_improve = 0
                state = {'net': model.state_dict(), 'optimizer': optimizer.state_dict(),'best_validation_loss': vali_loss}
                torch.save(state, path)
                print("Saved the model.")
            else:                           # if validation loss didn't decrease, reload the best model in next epoch.
                checkpoint = torch.load(path)
                model.load_state_dict(checkpoint['net'])
                optimizer.load_state_dict(checkpoint['optimizer'])
                not_improve += 1
                print("not_improve : {}".format(not_improve))
            if (not_improve+1) % 8 == 0:    # when validation loss doesn't decrease for 7 epochs, reduce the learning rate.
                learning_r *= 0.2
                adjust_learning_rate(optimizer, learning_r)
            if (not_improve+1) % 25 == 0:   # early stopping
                print("Training End......")
                break

            print("epoch:{}, train_loss:{}, vali_loss: {}".format(epoch, train_loss, vali_loss))
            train_loss_info.append(train_loss)
            val_loss_info.append(vali_loss)

    return train_loss_info, val_loss_info
示例#2
0
def test_daily(path, test_x, test_y, train_mean, train_std):
    """     test start!     """
    # using the test dataset to test model
    model = Net(feature_num)
    checkpoint = torch.load(path)
    model.load_state_dict(checkpoint['net'])
    model.eval()
    predict = model(test_x.float())
    real = test_y.clone()

    loss_fun = torch.nn.MSELoss()
    # two losses, one is normalized scale, another is original scale
    loss = loss_fun(predict, real)
    loss_original_scale, pre, rea = loss_cal(predict, real, train_mean, train_std)
    pre = np.array(pre.data)
    rea = np.array(rea.data)
    print("Test loss: " + str(loss))
    print("Test loss in original scale: " + str(loss_original_scale))

    # true output and predicted output
    plt.figure(2)
    plt.plot(list(rea), label="real")
    plt.plot(list(pre), label="pred")
    plt.legend(loc='best')
    plt.show()

    # true output and predicted output
    plt.figure(3)
    min_val = min(rea)
    max_val = max(rea)
    plt.scatter(rea,pre)
    plt.plot([min_val,max_val],[min_val,max_val],color = 'red')
    plt.show()