def handle2x(config, args): # resize input h1, w1, scale1 = pad_to_height(config.img_size[0], args.img1_height, args.img1_width) h2, w2, scale2 = pad_to_height(config.img_size[0], args.img2_height, args.img2_width) # load trained model net = get_autoencoder(config) net.load_state_dict(torch.load(args.model_path)) net.to(config.device) net.eval() # mean/std pose mean_pose, std_pose = get_meanpose(config) # get input input1 = openpose2motion(args.vid1_json_dir, scale=scale1, max_frame=args.max_length) input2 = openpose2motion(args.vid2_json_dir, scale=scale2, max_frame=args.max_length) input1 = preprocess_motion2d(input1, mean_pose, std_pose) input2 = preprocess_motion2d(input2, mean_pose, std_pose) input1 = input1.to(config.device) input2 = input2.to(config.device) # transfer by network out12 = net.transfer(input1, input2) out21 = net.transfer(input2, input1) # postprocessing the outputs input1 = postprocess_motion2d(input1, mean_pose, std_pose, w1 // 2, h1 // 2) input2 = postprocess_motion2d(input2, mean_pose, std_pose, w2 // 2, h2 // 2) out12 = postprocess_motion2d(out12, mean_pose, std_pose, w2 // 2, h2 // 2) out21 = postprocess_motion2d(out21, mean_pose, std_pose, w1 // 2, h1 // 2) if not args.disable_smooth: out12 = gaussian_filter1d(out12, sigma=2, axis=-1) out21 = gaussian_filter1d(out21, sigma=2, axis=-1) if args.out_dir is not None: save_dir = args.out_dir ensure_dir(save_dir) color1 = hex2rgb(args.color1) color2 = hex2rgb(args.color2) np.savez(os.path.join(save_dir, 'results.npz'), input1=input1, input2=input2, out12=out12, out21=out21) if args.render_video: print("Generating videos...") motion2video(input1, h1, w1, os.path.join(save_dir, 'input1.mp4'), color1, args.transparency, fps=args.fps, save_frame=args.save_frame) motion2video(input2, h2, w2, os.path.join(save_dir,'input2.mp4'), color2, args.transparency, fps=args.fps, save_frame=args.save_frame) motion2video(out12, h2, w2, os.path.join(save_dir,'out12.mp4'), color2, args.transparency, fps=args.fps, save_frame=args.save_frame) motion2video(out21, h1, w1, os.path.join(save_dir,'out21.mp4'), color1, args.transparency, fps=args.fps, save_frame=args.save_frame) print("Done.")
def motion_feature_extract(config, args): # resize input h1, w1, scale1 = pad_to_height(config.img_size[0], args.img1_height, args.img1_width) # load trained model net = get_autoencoder(config) net.load_state_dict(torch.load(args.model_path)) net.to(config.device) net.eval() # mean/std pose mean_pose, std_pose = get_meanpose(config) # get input input1 = openpose2motion(args.vid1_json_dir, scale=scale1, max_frame=args.max_length) print("after motion") print(input1.shape) input1 = preprocess_motion2d(input1, mean_pose, std_pose) print("after preprocess") print(input1.shape) if args.out_dir is not None: save_dir = args.out_dir ensure_dir(save_dir) # color1 = hex2rgb(args.color1) # color2 = hex2rgb(args.color2) np.savez(os.path.join(save_dir, 'pose_feature.npz'), pose=input1) input1 = input1.to(config.device) # transfer by network # out = net.transfer_three(input1, input2, input3) out = net.forward(input1) mot = net.mot_encoder(input1) print(mot.shape) # postprocessing the outputs input1 = postprocess_motion2d(input1, mean_pose, std_pose, w1 // 2, h1 // 2) out = postprocess_motion2d(out, mean_pose, std_pose, w1 // 2, h1 // 2) print("after postprocess") print(input1.shape) if not args.disable_smooth: out = gaussian_filter1d(out, sigma=2, axis=-1) # if args.out_dir is not None: # save_dir = args.out_dir # ensure_dir(save_dir) # # color1 = hex2rgb(args.color1) # # color2 = hex2rgb(args.color2) # np.savez(os.path.join(save_dir, 'results.npz'), pose=input1) # input1=input1, # input2=input2, # input3=input3, # out=out) # if args.render_video: # print("Generating videos...") # motion2video(input1, h1, w1, os.path.join(save_dir,'input1.mp4'), color1, args.transparency, # fps=args.fps, save_frame=args.save_frame) # motion2video(input2, h2, w2, os.path.join(save_dir,'input2.mp4'), color2, args.transparency, # fps=args.fps, save_frame=args.save_frame) # motion2video(input3, h3, w3, os.path.join(save_dir,'input3.mp4'), color3, args.transparency, # fps=args.fps, save_frame=args.save_frame) # motion2video(out, h1, w1, os.path.join(save_dir,'out.mp4'), color2, args.transparency, # fps=args.fps, save_frame=args.save_frame) print("Done.")
# clip and pad the video h1, w1, scale1 = pad_to_height(config.img_size[0], args.img1_height, args.img1_width) h2, w2, scale2 = pad_to_height(config.img_size[0], args.img2_height, args.img2_width) # load trained model net = get_autoencoder(config) net.load_state_dict(torch.load(args.model_path)) net.to(config.device) net.eval() # mean/std pose mean_pose, std_pose = get_meanpose(config) # process input data input1 = openpose2motion(args.vid1_json_dir, scale=scale1, max_frame=args.max_length) input2 = openpose2motion(args.vid2_json_dir, scale=scale2, max_frame=args.max_length) if input1.shape[-1] != input2.shape[-1]: length = min(input1.shape[-1], input2.shape[-1]) input1 = input1[:, :, length] input2 = input2[:, :, length] input1 = preprocess_motion2d(input1, mean_pose, std_pose) input2 = preprocess_motion2d(input2, mean_pose, std_pose) input1 = input1.to(config.device) input2 = input2.to(config.device) # interpolation print('nr_samples:', args.nr_sample, 'mode:', args.keep_attr, 'form:', args.form) out12 = interpolate(net, args.nr_sample, args.keep_attr, args.form, config.device)