示例#1
0
 def log_likelihood(self):
     # Get Probablities
     p = af.logistic(self.features.dot(self.w))
     # Get Log Likelihood For Each Row of Dataset
     loglikelihood = self.labels * np.log(p + 1e-24) + (1 - self.labels) * np.log(1 - p + 1e-24)
     # Return Sum
     return -1 * loglikelihood.sum() +  self.C * pn.penalty[self.penalty](self.w)
示例#2
0
    def predict(self, X):
        features = (X - self.mean_x) / self.std_x
        probs = af.logistic(features.dot(self.w))

        for p in probs:
            if p[0] >= 0.5: p[0] = 1
            else: p[0] = 0
        return probs
示例#3
0
    def predict(self, X):
        features = (X - self.mean_x) / self.std_x
        probs = af.logistic(features.dot(self.w))

        for p in probs:
            if p[0] >= 0.5: p[0] = 1
            else: p[0] = 0
        return probs
示例#4
0
 def log_likelihood(self):
     # Get Probablities
     p = af.logistic(self.features.dot(self.w))
     # Get Log Likelihood For Each Row of Dataset
     loglikelihood = self.labels * np.log(p + 1e-24) + (
         1 - self.labels) * np.log(1 - p + 1e-24)
     # Return Sum
     return -1 * loglikelihood.sum() + self.C * pn.penalty[self.penalty](
         self.w)
示例#5
0
    def log_likelihood_gradient(self):
        error = self.labels - af.logistic(self.features.dot(self.w))
        product = error * self.features

        return product.sum(axis=0).reshape(self.w.shape) - (self.C/self.w.size)* pn.penalty[self.penalty](self.w)
示例#6
0
 def predict_proba(self, X):
     features = (X - self.mean_x) / self.std_x
     probs = af.logistic(features.dot(self.w))
     return probs
示例#7
0
    def log_likelihood_gradient(self):
        error = self.labels - af.logistic(self.features.dot(self.w))
        product = error * self.features

        return product.sum(axis=0).reshape(self.w.shape) - (
            self.C / self.w.size) * pn.penalty[self.penalty](self.w)
示例#8
0
 def predict_proba(self, X):
     features = (X - self.mean_x) / self.std_x
     probs = af.logistic(features.dot(self.w))
     return probs