def compare_variable_attributes(fdatasets, r, name_list, sDir):
    vars_df = pd.DataFrame()
    for ii in range(len(fdatasets)):

        print('\n', fdatasets[ii].split('/')[-1])
        deployment = fdatasets[ii].split('/')[-1].split('_')[0].split('deployment')[-1]
        deployment = int(deployment)

        ds = xr.open_dataset(fdatasets[ii], mask_and_scale=False)
        time = ds['time'].values

        dr_dp = '-'.join((str(deployment))) #,ds.collection_method, ds.stream

        '''
        variable list
        '''
        var_list = cf.notin_list(ds.data_vars.keys(), ['time', '_qc_'])

        z_id, z_data, z_unit, z_name, z_fill = cf.add_pressure_to_dictionary_of_sci_vars(ds)
        df = pd.DataFrame({'var_id':[z_id], 'units':[z_unit[0]], 'long_name':[z_name[0]], 'fill_values':[z_fill[0]]},index=[dr_dp])
        vars_df = vars_df.append(df)

        for vname in name_list:

            vname_id, vname_unit, vname_name, vname_fv = get_variable_data(ds, var_list, vname)

            df = pd.DataFrame({'var_id':[vname_id], 'units':[vname_unit],
                               'long_name':[vname_name], 'fill_values':[str(vname_fv)]},index=[dr_dp])
            vars_df = vars_df.append(df)

    vars_df = vars_df.drop_duplicates()
    vars_df.to_csv('{}/{}_velocity_variables.csv'.format(sDir, r), index=True)

    return vars_df
def plot_velocity_variables(r, fdatasets, num_plots, save_dir):

    fig, ax = plt.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig_file = 'calculated_currents_plot'

    fig0, ax0 = plt.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig0.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig0_file = 'uvw_plots'

    fig1, ax1 = plt.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig1.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig1_file = 'pressure_plots'

    fig2, ax2 = plt.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig2.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig2_file = 'roll_plots'

    fig3, ax3 = plt.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig3.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig3_file = 'pitch_plots'

    for ii in range(len(fdatasets)):

        if num_plots > len(fdatasets):
            for jj in range(len(fdatasets), num_plots, 1):
                ax[jj].axis('off')
                ax0[jj].axis('off')
                # ax0[jj].axis('tight')
                ax1[jj].axis('off')
                ax2[jj].axis('off')
                ax3[jj].axis('off')

        print('\n', fdatasets[ii].split('/')[-1])
        deployment = fdatasets[ii].split('/')[-1].split('_')[0].split(
            'deployment')[-1]
        deployment = int(deployment)

        ds = xr.open_dataset(fdatasets[ii], mask_and_scale=False)
        time = ds['time'].values
        '''
        variable list
        '''
        var_list = cf.notin_list(ds.data_vars.keys(), ['time', '_qc_'])

        z_name, z_data, z_unit, z_name, z_fill = cf.add_pressure_to_dictionary_of_sci_vars(
            ds)
        z_data, err_count_z = reject_err_data_1_dims(z_data,
                                                     z_fill[0],
                                                     r,
                                                     z_name[0],
                                                     n=5)

        if 'VELPT' in r:
            w_id, w_data, w_unit, w_name, w_fill = get_variable_data(
                ds, var_list, 'upward_velocity')
            w_data, err_count_w = reject_err_data_1_dims(w_data,
                                                         w_fill,
                                                         r,
                                                         w_id,
                                                         n=5)

            u_id, u_data, u_unit, u_name, u_fill = get_variable_data(
                ds, var_list, 'eastward_velocity')
            u_data, err_count_u = reject_err_data_1_dims(u_data,
                                                         u_fill,
                                                         r,
                                                         u_id,
                                                         n=5)

            v_id, v_data, v_unit, v_name, v_fill = get_variable_data(
                ds, var_list, 'northward_velocity')
            v_data, err_count_v = reject_err_data_1_dims(v_data,
                                                         v_fill,
                                                         r,
                                                         v_id,
                                                         n=5)

            roll_id, roll_data, roll_unit, roll_name, roll_fill = get_variable_data(
                ds, var_list, 'roll')
            roll_data, err_count_roll = reject_err_data_1_dims(roll_data,
                                                               roll_fill,
                                                               r,
                                                               roll_id,
                                                               n=5)

            pitch_id, pitch_data, pitch_unit, pitch_name, pitch_fill = get_variable_data(
                ds, var_list, 'pitch')
            pitch_data, err_count_pitch = reject_err_data_1_dims(pitch_data,
                                                                 pitch_fill,
                                                                 r,
                                                                 pitch_id,
                                                                 n=5)
            '''
            According to VELPT manufacturer, data are suspect when the instrument is tilted more than 20 degrees
            redmine ticket # 12960
            '''

            tilt_ind = np.logical_or(
                abs(pitch_data) > 200,
                abs(roll_data) > 200)
            percent_good = (
                (len(time) - len(time[tilt_ind])) / len(time)) * 100

        elif 'VEL3D' in r:
            w_id, w_data, w_unit, w_name, w_fill = get_variable_data(
                ds, var_list, 'upward_turbulent_velocity')
            w_data, err_count_w = reject_err_data_1_dims(w_data,
                                                         w_fill,
                                                         r,
                                                         w_id,
                                                         n=5)

            u_id, u_data, u_unit, u_name, u_fill = get_variable_data(
                ds, var_list, 'eastward_turbulent_velocity')
            u_data, err_count_u = reject_err_data_1_dims(u_data,
                                                         u_fill,
                                                         r,
                                                         u_id,
                                                         n=5)

            v_id, v_data, v_unit, v_name, v_fill = get_variable_data(
                ds, var_list, 'northward_turbulent_velocity')
            v_data, err_count_v = reject_err_data_1_dims(v_data,
                                                         v_fill,
                                                         r,
                                                         v_id,
                                                         n=5)
        '''
        Plot pressure
        '''
        ax1[ii].plot(time,
                     z_data,
                     'b.',
                     linestyle='None',
                     marker='.',
                     markersize=0.5)  #linestyle='--', linewidth=.6
        if 'VELPT' in r:
            ax1[ii].plot(time[tilt_ind],
                         z_data[tilt_ind],
                         'r.',
                         linestyle='None',
                         marker='.',
                         markersize=0.5,
                         label=str(round(100 - percent_good, 2)) + '%')
        prepare_axis(r,
                     time,
                     deployment,
                     ax1[ii],
                     ii,
                     len(fdatasets),
                     z_name[0],
                     z_unit[0],
                     err_count=err_count_z)

        fig1_file = fig1_file + str(deployment)

        if 'VELPT' in r:
            '''
            plot roll
            '''
            ax2[ii].plot(time,
                         roll_data,
                         'b.',
                         linestyle='None',
                         marker='.',
                         markersize=0.5)
            ax2[ii].plot(time[tilt_ind],
                         roll_data[tilt_ind],
                         'r.',
                         linestyle='None',
                         marker='.',
                         markersize=0.5,
                         label=str(round(100 - percent_good, 2)) + '%')
            prepare_axis(r,
                         time,
                         deployment,
                         ax2[ii],
                         ii,
                         len(fdatasets),
                         roll_name,
                         roll_unit,
                         err_count=err_count_roll)

            fig2_file = fig2_file + str(deployment)
            '''
            plot pitch
            '''
            ax3[ii].plot(time,
                         pitch_data,
                         'b.',
                         linestyle='None',
                         marker='.',
                         markersize=0.5)
            ax3[ii].plot(time[tilt_ind],
                         pitch_data[tilt_ind],
                         'r.',
                         linestyle='None',
                         marker='.',
                         markersize=0.5,
                         label=str(round(100 - percent_good, 2)) + '%')
            prepare_axis(r,
                         time,
                         deployment,
                         ax3[ii],
                         ii,
                         len(fdatasets),
                         pitch_name,
                         pitch_unit,
                         err_count=err_count_pitch)

            fig3_file = fig3_file + str(deployment)
        '''
        1D Quiver plot
        '''
        ax[ii].quiver(time,
                      0,
                      u_data,
                      v_data,
                      color='b',
                      units='y',
                      scale_units='y',
                      scale=1,
                      headlength=1,
                      headaxislength=1,
                      width=0.004,
                      alpha=0.5)

        if 'VELPT' in r:
            ax[ii].quiver(time[tilt_ind],
                          0,
                          u_data[tilt_ind],
                          v_data[tilt_ind],
                          color='r',
                          units='y',
                          scale_units='y',
                          scale=1,
                          headlength=1,
                          headaxislength=1,
                          width=0.004,
                          alpha=0.5,
                          label=str(round(100 - percent_good, 2)) + '%')

        uv_magnitude = np.sqrt(u_data**2 + v_data**2)
        uv_maxmag = np.nanmax(uv_magnitude)

        ax[ii].set_ylim(-uv_maxmag, uv_maxmag)
        prepare_axis(r,
                     time,
                     deployment,
                     ax[ii],
                     ii,
                     len(fdatasets),
                     'Current Velocity',
                     u_unit,
                     err_count=None)

        fig_file = fig_file + str(deployment)
        '''
        Plot u and v components
        '''
        ax0[ii].plot(time,
                     v_data,
                     'b.',
                     linestyle='None',
                     marker='.',
                     markersize=0.5,
                     label='V')
        if 'VELPT' in r:
            ax0[ii].plot(time[tilt_ind],
                         v_data[tilt_ind],
                         'r',
                         linestyle='None',
                         marker='.',
                         markersize=0.5,
                         label=str(round(100 - percent_good, 2)) + '%')
        ax0[ii].plot(time,
                     u_data,
                     'g.',
                     linestyle='None',
                     marker='.',
                     markersize=0.5,
                     label='U')
        if 'VELPT' in r:
            ax0[ii].plot(time[tilt_ind],
                         u_data[tilt_ind],
                         'y',
                         linestyle='None',
                         marker='.',
                         markersize=0.5,
                         label=str(round(100 - percent_good, 2)) + '%')
        ax0[ii].plot(time,
                     w_data,
                     'm.',
                     linestyle='None',
                     marker='.',
                     markersize=0.5,
                     label='W')
        if 'VELPT' in r:
            ax0[ii].plot(time[tilt_ind],
                         w_data[tilt_ind],
                         'c',
                         linestyle='None',
                         marker='.',
                         markersize=0.5,
                         label=str(round(100 - percent_good, 2)) + '%')

        prepare_axis(r,
                     time,
                     deployment,
                     ax0[ii],
                     ii,
                     len(fdatasets),
                     'Velocity Components',
                     u_unit,
                     err_count=None)

        fig0_file = fig0_file + str(deployment)

    save_file = os.path.join(save_dir, fig1_file)
    fig1.savefig(str(save_file), dpi=150, bbox_inches='tight')

    save_file = os.path.join(save_dir, fig_file)
    fig.savefig(str(save_file), dpi=150, bbox_inches='tight')

    save_file = os.path.join(save_dir, fig0_file)
    fig0.savefig(str(save_file), dpi=150, bbox_inches='tight')

    save_file = os.path.join(save_dir, fig2_file)
    fig2.savefig(str(save_file), dpi=150, bbox_inches='tight')

    save_file = os.path.join(save_dir, fig3_file)
    fig3.savefig(str(save_file), dpi=150, bbox_inches='tight')

    plt.close('all')
def plot_velocity_variables(r, fdatasets, num_plots, save_dir):

    fig0_0x, ax0_0x = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig0_0x.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig0_0x_file = 'v_plots_xsection'

    fig0_0p, ax0_0p = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig0_0p.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig0_0p_file = 'v_plots_profile'

    fig0_1x, ax0_1x = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig0_1x.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig0_1x_file = 'u_plots_xsection'

    fig0_1p, ax0_1p = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig0_1p.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig0_1p_file = 'u_plots_profile'

    fig0_2x, ax0_2x = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig0_2x.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig0_2x_file = 'w_plots_xsection'

    fig0_2p, ax0_2p = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig0_2p.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig0_2p_file = 'w_plots_profile'

    # fig1, ax1 = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    # fig1.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    # fig1_file = 'Calculated_current_plots'

    fig2x, ax2x = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig2x.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig2x_file = 'roll_plots_xsection'

    fig2p, ax2p = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig2p.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig2p_file = 'roll_plots_profile'

    fig3x, ax3x = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig3x.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig3x_file = 'pitch_plots_xsection'

    fig3p, ax3p = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig3p.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig3p_file = 'pitch_plots_profile'

    fig4x, ax4x = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig4x.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig4x_file = 'calculated_current_magnitude_plots_xsection'

    fig4p, ax4p = pyplot.subplots(nrows=num_plots, ncols=1, sharey=True)
    fig4p.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    fig4p_file = 'calculated_current_magnitude_plots_profile'

    if num_plots > len(fdatasets):
        for jj in range(len(fdatasets), num_plots, 1):
            ax0_0x[jj].axis('off')
            ax0_1x[jj].axis('off')
            ax0_2x[jj].axis('off')
            ax0_0p[jj].axis('off')
            ax0_1p[jj].axis('off')
            ax0_2p[jj].axis('off')
            # ax1[jj].axis('off')
            ax2p[jj].axis('off')
            ax2x[jj].axis('off')

            ax3x[jj].axis('off')
            ax4x[jj].axis('off')
            ax3p[jj].axis('off')
            ax4p[jj].axis('off')

    if len(fdatasets) == 1:
        ax0_0x = [ax0_0x]
        ax0_1x = [ax0_1x]
        ax0_2x = [ax0_2x]
        ax0_0p = [ax0_0p]
        ax0_1p = [ax0_1p]
        ax0_2p = [ax0_2p]
        # ax1 = [ax1]
        ax2p = [ax2p]
        ax2x = [ax2x]
        ax3x = [ax3x]
        ax4x = [ax4x]
        ax3p = [ax3p]
        ax4p = [ax4p]

    for ii in range(len(fdatasets)):

        print('\n', fdatasets[ii].split('/')[-1])
        deployment = fdatasets[ii].split('/')[-1].split('_')[0].split('deployment')[-1]
        deployment = int(deployment)

        ds = xr.open_dataset(fdatasets[ii], mask_and_scale=False)
        time = ds['time'].values
        collection_method = ds.collection_method

        '''
        variable list
        '''
        var_list = cf.notin_list(ds.data_vars.keys(), ['time', '_qc_'])

        z_data, z_unit, z_name, z_fill = cf.add_pressure_to_dictionary_of_sci_vars(ds)
        z_data, err_count_z = reject_err_data_1_dims(z_data, z_fill[0], r, z_name[0], n=5)

        w_id, w_data, w_unit, w_name, w_fill = get_variable_data(ds, var_list, 'upward_velocity')
        w_data, err_count_w = reject_err_data_1_dims(w_data, w_fill, r, w_id, n=5)

        u_id, u_data, u_unit, u_name, u_fill = get_variable_data(ds, var_list, 'eastward_velocity')
        u_data, err_count_u = reject_err_data_1_dims(u_data, u_fill, r, u_id, n=5)

        v_id, v_data, v_unit, v_name, v_fill = get_variable_data(ds, var_list, 'northward_velocity')
        v_data, err_count_v = reject_err_data_1_dims(v_data, v_fill, r, v_id, n=5)

        roll_id, roll_data, roll_unit, roll_name, roll_fill = get_variable_data(ds, var_list, 'roll')
        roll_data, err_count_roll = reject_err_data_1_dims(roll_data, roll_fill, r, roll_id, n=5)

        pitch_id, pitch_data, pitch_unit, pitch_name, pitch_fill = get_variable_data(ds, var_list, 'pitch')
        pitch_data, err_count_pitch = reject_err_data_1_dims(pitch_data, pitch_fill, r, pitch_id, n=5)

        '''
        2D Quiver plot
        '''
        # ax1[ii].quiver(time, z_data, u_data, v_data, color='b', units='y', scale_units='y', scale=1, headlength=1,
        #                headaxislength=1, width=0.004, alpha=0.5)
        # M = np.sqrt(u_data ** 2 + v_data ** 2)
        # Q = ax1[ii].quiver(time[::100], z_data[::100], u_data[::100], v_data[::100], M[::100],
        #                    units='y', pivot='tip', width=0.022, scale=1 / 0.15)
        # css = ax1[ii].quiverkey(Q, 0.9, 0.9, 1, r'$1 \frac{m}{s}$', labelpos='E', coordinates='figure')
        # #
        # prepare_axis(css, fig1, ax1[ii],time, [z_name[0], z_unit[0]], ['Current Velocity', u_unit], r, deployment,  ii, len(fdatasets),
        #                    err_count=None)
        #
        # fig1_file = fig1_file + str(deployment)
        #
        '''
        plot roll
        '''
        # css = ax2p[ii].scatter(roll_data, z_data, c=time, s=2, edgecolor='None', cmap='rainbow')
        # prepare_axis_profile(css, fig2p, ax2p[ii], time, [z_name[0], z_unit[0]], [roll_name, roll_unit], r, deployment, ii,
        #                                                                     len(fdatasets), err_count=err_count_roll)
        # fig2p_file = fig2p_file + '_deployment' + str(deployment)+ '_' + \
        #              fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]
        #
        #
        # css = ax2x[ii].scatter(time, z_data, c=roll_data, cmap='RdGy', s=2, edgecolor='None')
        # prepare_axis_xsection(css, fig2x, ax2x[ii], time, [z_name[0], z_unit[0]], [roll_name, roll_unit], r, deployment, ii,
        #                                                                     len(fdatasets), err_count=err_count_roll)
        # fig2x_file = fig2x_file + '_deployment' + str(deployment) + '_' + \
        #              fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]
        # #
        '''
        plot pitch
        '''
        # css = ax3p[ii].scatter(pitch_data, z_data, c=time, s=2, edgecolor='None', cmap='rainbow')
        # prepare_axis_profile(css, fig3p, ax3p[ii], time, [z_name[0], z_unit[0]], [pitch_name, pitch_unit], r, deployment, ii,
        #                      len(fdatasets), err_count=err_count_pitch)
        # fig3p_file = fig3p_file + '_deployment' + str(deployment) + '_' + fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]
        #
        # css = ax3x[ii].scatter(time, z_data, c=pitch_data, cmap='RdGy', s=2, edgecolor='None')
        # prepare_axis_xsection(css, fig3x, ax3x[ii], time, [z_name[0], z_unit[0]], [pitch_name, pitch_unit], r, deployment, ii,
        #                                                                     len(fdatasets), err_count=err_count_pitch)
        # fig3x_file = fig3x_file + '_deployment' + str(deployment) + '_' + fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]

    #
    #     '''
    #     plot current magnitude
    #     '''
    #     uv_magnitude = np.sqrt(u_data ** 2 + v_data ** 2)
    #
    #     css = ax4p[ii].scatter(uv_magnitude, z_data, c=time, s=2, edgecolor='None', cmap='rainbow')
    #     prepare_axis_profile(css, fig4p, ax4p[ii], time, [z_name[0], z_unit[0]], ['[U,V] Current Velocity', u_unit],
    #                                                       r, deployment, ii, len(fdatasets), err_count=err_count_pitch)
    #
    #     fig4p_file = fig4p_file + '_deployment' + str(deployment) + '_' + \
    #                  fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]
    #
    #     css = ax4x[ii].scatter(time, z_data, c=uv_magnitude, cmap='PuBu', s=2, edgecolor='None')
    #     prepare_axis_xsection(css, fig4x, ax4x[ii], time, [z_name[0], z_unit[0]], ['[U,V] Current Velocity', u_unit],
    #                                                                 r, deployment, ii, len(fdatasets), err_count=None)
    #     fig4x_file = fig4x_file + '_deployment' + str(deployment) + '_' + \
    #                 fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]
    #
    #     '''
    #     Plot v component
    #     '''
    #     css = ax0_0p[ii].scatter(v_data, z_data, c=time, s=2, edgecolor='None', cmap='rainbow')
    #     prepare_axis_profile(css, fig0_0p, ax0_0p[ii], time, [z_name[0], z_unit[0]], ['[V] Velocity Components', u_unit],
    #                          r, deployment, ii, len(fdatasets), err_count=err_count_pitch)
    #
    #     fig0_0p_file = fig0_0p_file + '_deployment' + str(deployment) + '_' + \
    #                  fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]
    #
    #     css = ax0_0x[ii].scatter(time, z_data, c=v_data, cmap='RdBu', s=2, edgecolor='None')
    #     prepare_axis_xsection(css, fig0_0x, ax0_0x[ii], time, [z_name[0], z_unit[0]], ['[V] Velocity Components', v_unit],
    #                                                         r, deployment, ii, len(fdatasets), err_count=err_count_v)
    #     fig0_0x_file = fig0_0x_file + '_deployment' + str(deployment) + '_' + \
    #                    fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]
    # #
    #     '''
    #     Plot u component
    #     '''
    #     css = ax0_1p[ii].scatter(u_data, z_data, c=time, s=2, edgecolor='None', cmap='rainbow')
    #     prepare_axis_profile(css, fig0_1p, ax0_1p[ii], time, [z_name[0], z_unit[0]],
    #                          ['[U] Velocity Components', u_unit],
    #                          r, deployment, ii, len(fdatasets), err_count=err_count_pitch)
    #
    #     fig0_1p_file = fig0_1p_file + '_deployment' + str(deployment) + '_' + \
    #                    fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]
    #
    #     css = ax0_1x[ii].scatter(time, z_data, c=u_data, cmap='RdBu', s=2, edgecolor='None')
    #     prepare_axis_xsection(css, fig0_1x, ax0_1x[ii], time, [z_name[0], z_unit[0]], ['[U] Velocity Components', u_unit],
    #                                                         r, deployment, ii, len(fdatasets), err_count=err_count_u)
    #
    #     fig0_1x_file = fig0_1x_file + '_deployment' + str(deployment) + '_' + \
    #                    fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]
    #
    #     '''
    #     Plot w component
    #     '''
        css = ax0_2p[ii].scatter(w_data, z_data, c=time, s=2, edgecolor='None', cmap='rainbow')
        prepare_axis_profile(css, fig0_2p, ax0_2p[ii], time, [z_name[0], z_unit[0]],
                             ['[W] Velocity Components', u_unit],
                             r, deployment, ii, len(fdatasets), err_count=err_count_pitch)

        fig0_2p_file = fig0_2p_file + '_deployment' + str(deployment) + '_' + \
                       fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]

        css = ax0_2x[ii].scatter(time, z_data, c=w_data, cmap='RdBu', s=2, edgecolor='None')
        prepare_axis_xsection(css, fig0_2x, ax0_2x[ii], time, [z_name[0], z_unit[0]], ['[W] Velocity Components', w_unit],
                                                             r, deployment, ii, len(fdatasets), err_count=err_count_w)

        fig0_2x_file = fig0_2x_file + '_deployment' + str(deployment) + '_' + \
                       fdatasets[ii].split('/')[-1].split('_')[-1].split('.')[0]
    #
    #
    # save_file = os.path.join(save_dir, fig1_file)
    # fig1.savefig(str(save_file), dpi=150, bbox_inches='tight')

    # save_file = os.path.join(save_dir, fig2p_file)
    # fig2p.savefig(str(save_file), dpi=150, bbox_inches='tight')
    #
    # save_file = os.path.join(save_dir, fig2x_file)
    # fig2x.savefig(str(save_file), dpi=150, bbox_inches='tight')

    # save_file = os.path.join(save_dir, fig3p_file)
    # fig3p.savefig(str(save_file), dpi=150, bbox_inches='tight')
    #
    # save_file = os.path.join(save_dir, fig3x_file)
    # fig3x.savefig(str(save_file), dpi=150, bbox_inches='tight')
    # #
    # save_file = os.path.join(save_dir, fig4p_file)
    # fig4p.savefig(str(save_file), dpi=150, bbox_inches='tight')
    #
    # save_file = os.path.join(save_dir, fig4x_file)
    # fig4x.savefig(str(save_file), dpi=150, bbox_inches='tight')
    #
    # save_file = os.path.join(save_dir, fig0_0p_file)
    # fig0_0p.savefig(str(save_file), dpi=150, bbox_inches='tight')
    #
    # save_file = os.path.join(save_dir, fig0_0x_file)
    # fig0_0x.savefig(str(save_file), dpi=150, bbox_inches='tight')
    # #
    # save_file = os.path.join(save_dir, fig0_1p_file)
    # fig0_1p.savefig(str(save_file), dpi=150, bbox_inches='tight')
    #
    # save_file = os.path.join(save_dir, fig0_1x_file)
    # fig0_1x.savefig(str(save_file), dpi=150, bbox_inches='tight')
    # #
    save_file = os.path.join(save_dir, fig0_2p_file)
    fig0_2p.savefig(str(save_file), dpi=150, bbox_inches='tight')

    save_file = os.path.join(save_dir, fig0_2x_file)
    fig0_2x.savefig(str(save_file), dpi=150, bbox_inches='tight')

    pyplot.close(fig0_0p)
    pyplot.close(fig0_0x)
    pyplot.close(fig0_1p)
    pyplot.close(fig0_1x)
    pyplot.close(fig0_2p)
    pyplot.close(fig0_2x)
    pyplot.close(fig2p)
    pyplot.close(fig2x)
    pyplot.close(fig3p)
    pyplot.close(fig3x)
    pyplot.close(fig4p)
    pyplot.close(fig4x)