示例#1
0
def plot_only_prediction(predict):
    fig, axes = plt.subplots(2, 1)
    fig.suptitle('Prediction Results', fontweight='bold')

    predict_int_avg = moving_average(predict[0], 30)
    axes[0].plot(predict_int_avg)
    axes[0].set_title('Interictal Predictions')
    axes[0].set_xlim(0, len(predict_int_avg))
    axes[0].set_ylim(0, 1.05)
    axes[0].axhline(y=max(predict_int_avg),
                    color='red',
                    linewidth=0.5,
                    label=str(max(predict_int_avg)))
    axes[0].legend()

    predict_pre_avg = moving_average(predict[1], 30)
    axes[1].plot(predict_pre_avg)
    axes[1].set_title('Precital Predictions')
    axes[1].set_xlim(0, len(predict_pre_avg))
    axes[1].set_ylim(0, 1.05)
    axes[1].axhline(y=max(predict_pre_avg),
                    color='red',
                    linewidth=0.5,
                    label=str(max(predict_pre_avg)))
    axes[1].legend()

    fig.show()
示例#2
0
def plot_subject_scores(testParams, foldPairs, labels, featureParams,
                        timingParams):

    fig, axes = plt.subplots(1, 1)
    fig.suptitle('ROC Analysis', fontweight='bold')

    stepLen = (featureParams.windowLength * (1 - featureParams.overlap))
    refractoryLen = timingParams.refractoryLen * 60
    refractoryPeriod = int(refractoryLen / stepLen)

    testPredictsAll = []
    testLabels = np.full(len(labels), fill_value=-1, dtype=int)

    for s in range(len(testParams)):
        testLabels[foldPairs[s][0][2]] = np.squeeze(
            np.hstack((np.full(len(testParams[s][0].testPred[0]),
                               fill_value=labelTypes["interictal"]),
                       np.full(len(testParams[s][0].testPred[1]),
                               fill_value=labelTypes["preictal"]))))

    for f in range(len(testParams[0])):
        testPredicts = np.zeros(len(labels), dtype=float)
        for s in range(len(testParams)):
            testPredicts[foldPairs[s][f][2]] += np.squeeze(
                np.hstack((np.squeeze(testParams[s][f].testPred[0]),
                           np.squeeze(testParams[s][f].testPred[1]))))
        testPredicts = moving_average(testPredicts, 30)
        testPredictsAll.append(testPredicts)

    # Compute ROC curve and area the curve
    for testPredicts in testPredictsAll:
        fpr, tpr, fps, tps, thresholds = my_roc_curve(
            testLabels,
            testPredicts,
            pos_label=labelTypes["preictal"],
            neg_label=labelTypes["interictal"],
            refractory_period=refractoryPeriod,
            rate_period=60 * 60 / stepLen,
            point=5000)
        axes.plot(fpr, tpr)
    axes.set_ylabel("True Positive Rate (sensitivity)")
    axes.set_xlabel("False Positive Rate(per hour)")
    axes.set_ylim(0, 1.02)
    axes.set_xlim(-0.01, 1)

    fig.show()
示例#3
0
def plot_subject_prediction_train(testParams, foldPairs, labels):

    fig, axes = plt.subplots(1, 1)
    fig.suptitle('Prediction Results', fontweight='bold')

    predictions = np.zeros((len(labels)), dtype=float)
    labels[labels != 1] = 0

    for s in range(len(testParams)):
        for f in range(len(testParams[s])):
            predictions[foldPairs[s][f][2]] += np.squeeze(
                np.hstack((np.squeeze(testParams[s][f].testPred[0]),
                           np.squeeze(testParams[s][f].testPred[1]))))

    predictions = predictions / len(testParams[0])
    predictions = moving_average(predictions, 30)
    axes.plot(predictions)
    axes.plot(labels)
    axes.set_xlim(0, len(predictions))
    axes.set_ylim(0, 1.05)
    axes.legend()

    fig.show()
示例#4
0
def gen_subject_roc(test_id):

    result = load_results(test_id)

    featureParams = result['featureParams']
    timingParams = result['timingParams']
    labels = result['dataset'].labels
    foldPairs = result["dataset"].fold_pairs
    testParams = result["trainResult"].testParams

    stepLen = (featureParams.windowLength * (1 - featureParams.overlap))
    refractoryLen = timingParams.refractoryLen * 60
    refractoryPeriod = int(refractoryLen / stepLen)

    testLabels = np.full(len(labels), fill_value=-1, dtype=int)
    intHour = 0

    for s in range(len(testParams)):
        intHour += len(testParams[s][0].testPred[0])
        testLabels[foldPairs[s][0][2]] = np.squeeze(
            np.hstack((np.full(len(testParams[s][0].testPred[0]),
                               fill_value=labelTypes["interictal"]),
                       np.full(len(testParams[s][0].testPred[1]),
                               fill_value=labelTypes["preictal"]))))
    intHour = intHour * stepLen / (60 * 60)

    testPredictsMean = np.zeros(len(labels), dtype=float)
    testPredictsAll = []
    for f in range(len(testParams[0])):
        testPredicts = np.zeros(len(labels), dtype=float)
        for s in range(len(testParams)):
            testPredicts[foldPairs[s][f][2]] += np.squeeze(
                np.hstack((np.squeeze(testParams[s][f].testPred[0]),
                           np.squeeze(testParams[s][f].testPred[1]))))
        testPredicts = moving_average(testPredicts, 30)
        testPredictsMean += testPredicts / len(testParams[0])
        testPredictsAll.append(testPredicts)
    testPredictsAll.append(testPredictsMean)

    fpr_all = []
    tpr_all = []
    fps_all = []
    tps_all = []
    thresholds_all = []
    cutoff_all = []
    for testPredicts, idx in zip(testPredictsAll, range(len(testPredictsAll))):
        fpr, tpr, fps, tps, thresholds = my_roc_curve(
            testLabels,
            testPredicts,
            pos_label=labelTypes["preictal"],
            neg_label=labelTypes["interictal"],
            refractory_period=refractoryPeriod,
            rate_period=60 * 60 / stepLen,
            point=20)
        fpr_all.append(fpr)
        tpr_all.append(tpr)
        fps_all.append(fps)
        tps_all.append(tps)
        thresholds_all.append(thresholds)
        cutoff_all.append(find_cutoff_idx(fpr, tpr))

    results = {
        "fpr": fpr_all,
        "tpr": tpr_all,
        "fps": fps_all,
        "tps": tps_all,
        "thresholds": thresholds_all,
        "cutoff": cutoff_all,
        "intHour": intHour,
        "sCount": int(tps_all[-1][-1])
    }

    # save results and params
    test_name = globals.file_test + "test_roc_" + str(test_id) + ".mat"
    pickle_out = open(test_name, "wb")
    pickle.dump(results, pickle_out)
    pickle_out.close()
示例#5
0
def compare_subject_prediction(results, plotLabels=None, plotTitle=None):

    fig, axes = plt.subplots(1, 1)
    fig.suptitle('Prediction Results', fontweight='bold')
    #colors = cm.gist_ncar(np.linspace(0, 1, 4))
    colors = cm.tab20(np.linspace(0, 1, 20))
    tickPeriod = 60 * 60

    for result, color in zip(results, colors):
        featureParams = result['featureParams']
        timingParams = result['timingParams']
        labels = result['dataset'].labels
        foldPairs = result["dataset"].fold_pairs
        testParams = result["trainResult"].testParams

        stepLen = (featureParams.windowLength * (1 - featureParams.overlap))

        testLabels = np.full(len(labels), fill_value=-1, dtype=int)
        intHour = 0

        for s in range(len(testParams)):
            intHour += len(testParams[s][0].testPred[0])
            testLabels[foldPairs[s][0][2]] = np.squeeze(
                np.hstack((np.full(len(testParams[s][0].testPred[0]),
                                   fill_value=labelTypes["interictal"]),
                           np.full(len(testParams[s][0].testPred[1]),
                                   fill_value=labelTypes["preictal"]))))
        intHour = intHour * stepLen / (60 * 60)

        testPredictsMean = np.zeros(len(labels), dtype=float)
        for f in range(len(testParams[0])):
            testPredicts = np.zeros(len(labels), dtype=float)
            for s in range(len(testParams)):
                testPredicts[foldPairs[s][f][2]] += np.squeeze(
                    np.hstack((np.squeeze(testParams[s][f].testPred[0]),
                               np.squeeze(testParams[s][f].testPred[1]))))
            testPredicts = moving_average(testPredicts, 30)
            testPredictsMean += testPredicts / len(testParams[0])

        if plotLabels:
            plotLabel = get_plot_label_values(result, plotLabels)

        axes.plot(testPredictsMean, label=plotLabel, color=color)
    axes.set_ylabel("Prediction Value")
    axes.set_xlabel("Time (hour)")
    ticks = range(0, len(testPredictsMean), int(tickPeriod / stepLen))
    axes.set_xticks(ticks, minor=False)
    axes.set_xticklabels(range(len(ticks)), fontdict=None, minor=False)
    axes.xaxis.grid(which='major', alpha=0.7, linestyle=':')

    pos_idx = find_ranges(testLabels, val=1)
    seizure_idx = np.transpose(pos_idx)[1] + int(
        timingParams.sphLen * 60 / stepLen)
    for sei, idx in zip(seizure_idx, range(len(seizure_idx))):
        if idx == 0:
            axes.axvline(x=sei, linewidth=2, color='r', label='seizure onsets')
        else:
            axes.axvline(x=sei, linewidth=2, color='r')
    axes.set_xlim(0, len(testPredictsMean))
    axes.set_ylim(0, 1.05)
    handles, labels = axes.get_legend_handles_labels()
    axes.legend(handles,
                labels,
                ncol=1,
                loc=0,
                handletextpad=0.5,
                columnspacing=0.2)

    if plotTitle:
        axes.set_title(get_plot_label_values(result, plotTitle), loc="center")

    print("\tinterictal Hour:{}\tseizure Count:{}".format(
        intHour, len(seizure_idx)))

    fig.show()
示例#6
0
def compare_subject_roc(results, plotLabels=None, plotTitle=None):

    fig, axes = plt.subplots(1, 1)
    fig.suptitle('ROC Analysis', fontweight='bold')
    #colors = cm.gist_ncar(np.linspace(0, 1, 4))
    colors = cm.tab20(np.linspace(0, 1, 20))

    for result, color in zip(results, colors):
        featureParams = result['featureParams']
        timingParams = result['timingParams']
        labels = result['dataset'].labels
        foldPairs = result["dataset"].fold_pairs
        testParams = result["trainResult"].testParams

        stepLen = (featureParams.windowLength * (1 - featureParams.overlap))
        refractoryLen = timingParams.refractoryLen * 60
        refractoryPeriod = int(refractoryLen / stepLen)

        testLabels = np.full(len(labels), fill_value=-1, dtype=int)

        for s in range(len(testParams)):
            testLabels[foldPairs[s][0][2]] = np.squeeze(
                np.hstack((np.full(len(testParams[s][0].testPred[0]),
                                   fill_value=labelTypes["interictal"]),
                           np.full(len(testParams[s][0].testPred[1]),
                                   fill_value=labelTypes["preictal"]))))

        testPredictsMean = np.zeros(len(labels), dtype=float)
        for f in range(len(testParams[0])):
            testPredicts = np.zeros(len(labels), dtype=float)
            for s in range(len(testParams)):
                testPredicts[foldPairs[s][f][2]] += np.squeeze(
                    np.hstack((np.squeeze(testParams[s][f].testPred[0]),
                               np.squeeze(testParams[s][f].testPred[1]))))
            testPredicts = moving_average(testPredicts, 30)
            testPredictsMean += testPredicts / len(testParams[0])

        fpr, tpr, fps, tps, thresholds = my_roc_curve(
            testLabels,
            testPredictsMean,
            pos_label=labelTypes["preictal"],
            neg_label=labelTypes["interictal"],
            refractory_period=refractoryPeriod,
            rate_period=60 * 60 / stepLen,
            point=20)
        cutoff = find_cutoff_idx(fpr, tpr)

        if plotLabels:
            plotLabel = get_plot_label_values(result, plotLabels)

        axes.plot(fpr, tpr, label=plotLabel, color=color)
        axes.plot(fpr[cutoff],
                  tpr[cutoff],
                  'o',
                  mfc="None",
                  color=color,
                  label="({},{})".format(round(fpr[cutoff], 2),
                                         round(tpr[cutoff], 2)))
        print(
            "\t" + plotLabel +
            "\tfpr:{:2.4f}\ttpr:{:2.4f}\tfps:{:2d}\ttps:{:2d}".format(
                fpr[cutoff], tpr[cutoff], int(fps[cutoff]), int(tps[cutoff])))

    axes.set_ylabel("Sensitivity")
    axes.set_xlabel("False Positive Rate (per hour)")
    axes.set_ylim(0, 1.02)
    axes.set_xlim(-0.01, 1)
    handles, labels = axes.get_legend_handles_labels()
    axes.legend(flip(handles, 2),
                flip(labels, 2),
                ncol=2,
                loc=4,
                handletextpad=0.15,
                columnspacing=0.2)

    if plotTitle:
        axes.set_title(get_plot_label_values(result, plotTitle), loc="center")

    fig.show()