示例#1
0
def plot_aan_ratio(dates: list, aan: list, output_directory: str, name: str):
    # Plot ratio
    x_date = []
    ratio = []
    ratio_err = []
    for i in range(len(dates[0])):
        for j in range(len(dates[1])):
            if dates[0][i] == dates[1][j]:
                x_date.append(dates[0][i])
                if aan[1][j] == 0:
                    pass
                else:
                    ratio.append(aan[0][i] / aan[1][j])
                break

    x_date = process_date(x_date)

    plt.plot(x_date, ratio, "k.")
    plt.axvline(98, color="r", ls="--")
    plt.axvline(0, color="b", ls="--")
    plt.xlabel("exposure days relative to 06/11/2019")
    plt.ylabel("Ratio AAN Ch0/Ch1")
    plt.title("Ratio of AAN vs time")
    plt.grid()
    # plt.xlim(np.amin(np.array(x_date)), np.amax(np.array(x_date)))
    # plt.ylim(0, 2)
    plt.savefig(output_directory + "/summary_plots/aan_ratio_vs_time" + name +
                ".pdf")
    plt.close()
示例#2
0
def plot_par(date, par, output_directory: str, pmt_object: PMT_Object,
             name: str):
    date = process_date(date)
    try:
        start = np.where(date == 0)[0][0]
    except:
        start = np.where(date == 1)[0][0]
    mid = np.where(date == 98)[0][0]

    popt, pcov = curve_fit(f=model_day,
                           xdata=date[mid + 1:],
                           ydata=np.array(par[mid + 1:]),
                           p0=[0.1, 1, 19],
                           bounds=[[0, 0, 0], [1e5, 1e10, 100]])

    plt.figure(num=None, figsize=(9, 5), dpi=80, facecolor='w', edgecolor='k')
    plt.plot(date[:start + 1],
             np.array(par[:start + 1]),
             "g.",
             label="Atmospheric He")
    plt.plot(date[start + 1:mid + 1],
             np.array(par[start + 1:mid + 1]),
             "b.",
             label="1% He")
    plt.plot(date[mid + 1:], np.array(par[mid + 1:]), "r.", label="10% He")
    plt.plot(date[mid + 1:],
             model_day(date[mid + 1:], *popt),
             'k-',
             label='model')
    plt.axvline(date[start], 0, 100, ls='--', color='k')
    plt.axvline(date[mid], 0, 100, ls='--', color='k')
    plt.xlabel("exposure days relative to 06/11/2019")
    plt.ylabel("Afterpulse rate /%")
    plt.title(pmt_object.get_pmt_id() + " PAR vs exposure time")
    plt.grid()
    plt.ylim(0, 100)
    plt.legend(loc='upper left')
    plt.savefig(output_directory + "/summary_plots/" +
                pmt_object.get_pmt_id() + "_par_vs_time" + name + ".pdf")

    print('Param p{}: {:.2e} ± {:.1e}'.format(0, popt[0], np.sqrt(pcov[0, 0])))
    print('Param p{}: {:.2e} ± {:.1e}'.format(1, popt[1], np.sqrt(pcov[1, 1])))
    print('Param p{}: {:.2e} ± {:.1e}'.format(2, popt[2], np.sqrt(pcov[2, 2])))
    # print('Chi2 is:', chi_2)

    plt.close()
def main():
    plt.rcParams["figure.figsize"] = (20, 5)

    args = io_parse_arguments()
    directory = args.i
    output_filename = args.o

    try:
        filenames_file = open(directory + "filenames.txt", 'r')
    except FileNotFoundError as fnf_error:
        print(fnf_error)
        raise Exception("Error opening data file")

    file_names = np.loadtxt(directory + "filenames.txt",
                            delimiter=',',
                            dtype={
                                'names': ['filename'],
                                'formats': ['S100']
                            },
                            unpack=True)

    success_rate = [0, 0]
    num_average = 7
    re_bin = 10
    number_total_weeks = 60
    last_temp = [[], []]
    x_og = []
    num_in_week = [[0 for i in range(number_total_weeks + 1)],
                   [0 for i in range(number_total_weeks + 1)]]
    apulse_num_y = [[[] for i in range(10)], [[] for i in range(10)]]
    day_nums = [[], []]

    color = 'g-'
    #for i_file in tqdm.tqdm(range(file_names.size)):
    for i_file in range(file_names.size):
        #print(directory + "/" + file_names[i_file][0].decode("utf-8"))
        file = ROOT.TFile(directory + file_names[i_file][0].decode("utf-8"),
                          "READ")
        date = file_names[i_file][0].decode("utf-8").split("_")[0]
        exposure = process_exposure(np.array([int(date)]))[0]
        day_num = process_date(np.array([int(date)]))[0]
        week_num = int(day_num / num_average)
        time = file_names[i_file][0].decode("utf-8").split("_")[1]

        if i_file == 0:
            name = date + "_" + 'GAO607_apulse_times_1400V'
            hist = file.Get(name)
            temp = []
            the_bin = 0

            #print(hist.GetNbinsX())

            for i_bin in range(hist.GetNbinsX()):
                if the_bin == 0:
                    temp0 = 0

                temp0 += hist.GetBinContent(i_bin)

                the_bin += 1

                if the_bin == re_bin:
                    temp.append(temp0)
                    x_og.append(i_bin * hist.GetBinWidth(i_bin))
                    the_bin = 0

            for i in range(number_total_weeks + 1):
                last_temp[0].append(np.zeros_like(np.array(temp)))
                last_temp[1].append(np.zeros_like(np.array(temp)))

        if day_num < 0:
            continue

        for i_channel in range(2):
            #print(date + "_" + names[i_channel] + "_apulse_times_1400")
            hist = file.Get(date + "_" + names[i_channel] +
                            "_apulse_times_1400V")
            hist_0 = file.Get(date + "_" + names[i_channel] +
                              "_apulse_num_1400V")

            try:
                hist.GetNbinsX()
            except:
                del hist
                continue

            temp = []
            the_bin = 0
            x = []

            for i_bin in range(hist.GetNbinsX()):
                if the_bin == 0:
                    temp0 = 0

                temp0 += hist.GetBinContent(i_bin)

                the_bin += 1

                if the_bin == re_bin:
                    temp.append(temp0)
                    x.append(i_bin * hist.GetBinWidth(i_bin))
                    the_bin = 0
            if i_channel == 0:
                if 0 < day_num < 98:
                    color = 'b-'
                if day_num >= 98:
                    color = 'r-'
                plt.plot(x, 100 * np.array(temp) / hist_0.GetEntries(), color)
                plt.plot(0, 0, 'g-', label="Atmosphere He")
                plt.plot(0, 0, 'b-', label="1% He")
                plt.plot(0, 0, 'r-', label="10% He")
                plt.axvline(1580, ls='--', color='r', label=r"$He^+$")
                plt.axvline(2680, ls='--', color='g', label=r"$H_2O^+$")
                plt.axvline(1290, ls='--', color='k', label=r"$H_2^+ He^{2+}$")
                plt.axvline(2560, ls='--', color='b', label=r"$CH_4^+$")
                plt.axvline(3850, ls='--', color='c', label=r"$CO_2^+$")
                plt.legend(loc="upper right")
                plt.ylim(0, 15)
                plt.xlim(800, 7000)
                plt.xlabel("afterpulse time in waveform /ns")
                plt.ylabel("normalised counts /%")
                plt.title("Ch{} Date:{} Exposure:{} atm-day DayNUM:{}".format(
                    i_channel, date, round(exposure, 2), day_num))
                plt.grid()
                #plt.yscale('log')
                plt.show(block=False)
                plt.pause(0.001)
                plt.close()

            last_temp[i_channel][week_num] += 100 * np.array(
                temp) / hist.GetEntries()
            num_in_week[i_channel][week_num] += 1
            success_rate[i_channel] += 1
            del hist

        for i_channel in range(2):
            hist = file.Get(date + "_" + names[i_channel] +
                            "_apulse_num_1400V")

            try:
                hist.GetNbinsX()
            except:
                del hist
                continue

            for i_bin in range(len(apulse_num_y[i_channel])):
                if hist.GetEntries() > 0:
                    apulse_num_y[i_channel][i_bin].append(
                        hist.GetBinContent(i_bin) / hist.GetEntries())
                else:
                    pass

            day_nums[i_channel].append(day_num)
            del hist

        file.Close()
        del file

    for i_week in range(len(last_temp[0])):
        if i_week < 14:
            color = 'b-'
        elif i_week >= 14:
            color = 'r-'
        else:
            color = 'g-'
        plt.plot(x_og, last_temp[0][i_week] / num_in_week[0][i_week], color)
        plt.title("Ch:{} Week num:{}".format(0, i_week))
        plt.ylim(0, 6)
        plt.plot(0, 0, 'g-', label="Atmosphere He")
        plt.plot(0, 0, 'b-', label="1% He")
        plt.plot(0, 0, 'r-', label="10% He")
        plt.axvline(1580, ls='--', color='r', label=r"$He^+$")
        plt.axvline(2680, ls='--', color='g', label=r"$H_2O^+$")
        plt.axvline(1290, ls='--', color='k', label=r"$H_2^+ He^{2+}$")
        plt.axvline(2560, ls='--', color='b', label=r"$CH_4^+$")
        plt.axvline(3850, ls='--', color='c', label=r"$CO_2^+$")
        plt.xlim(800, 7000)
        plt.xlabel("afterpulse time in waveform /ns")
        plt.ylabel("normalised counts /%")
        plt.legend(loc="upper right")
        plt.grid()
        plt.show(block=False)
        plt.pause(0.01)
        plt.close()
    #plt.rcParams["figure.figsize"] = (20, 20)'''
    '''for i_bin in range(1,len(apulse_num_y[0])):
        ylim = 0
        if i_bin == 1:
            ylim = 100
        else:
            ylim = 100/ (i_bin*2)

        plt.subplot(3,1,1)
        plt.plot(day_nums[0],100*np.array(apulse_num_y[0][i_bin]), 'k.')
        plt.axvline(98, color='r', ls='--')
        plt.axvline(0, color='b', ls='--')
        plt.title("Apulse num:{}".format(i_bin-1))
        plt.grid()
        plt.ylim(0,ylim)

        plt.subplot(3,1,2)
        plt.plot(day_nums[1],100*np.array(apulse_num_y[1][i_bin]), 'k.')
        plt.axvline(98, color='r', ls='--')
        plt.axvline(0, color='b', ls='--')
        plt.ylabel("Percentage apulses /%")
        plt.grid()
        plt.ylim(0, ylim)

        plt.subplot(3,1,3)
        plt.plot(day_nums[0], np.array(apulse_num_y[0][i_bin])/np.array(apulse_num_y[1][i_bin]), 'k.')
        plt.axvline(98, color='r', ls='--')
        plt.axvline(0, color='b', ls='--')
        plt.xlabel("Exposure time /days")
        plt.grid()
        plt.ylabel("Ratio")
        plt.savefig('/Users/willquinn/Desktop/apulse_num_bin_'+str(i_bin))
        plt.close()'''

    print("Success rate: {} Ch0 {} Ch1".format(
        success_rate[0] / file_names.size, success_rate[1] / file_names.size))

    return
示例#4
0
def main():
    # Handle the input arguments:
    ##############################
    args = pmt_parse_arguments()
    input_directory = args.i
    # config_file_name = args.c
    output_directory = args.o
    ##############################

    filenames_txt = input_directory + "/filenames.txt"

    try:
        print(">>> Reading data from file: {}".format(filenames_txt))
        date_file = open(filenames_txt, 'r')
    except FileNotFoundError as fnf_error:
        print(fnf_error)
        raise Exception("Error opening data file {}".format(filenames_txt))

    filenames = np.loadtxt(filenames_txt, delimiter=',', dtype={
        'names': ['filename'],
        'formats': ['S100']}, unpack=True)

    topology = [2, 1]
    pmt_array = PMT_Array(topology, "summary")
    pmt_array.set_pmt_id("GAO607", 0)
    pmt_array.set_pmt_id("GAO612", 1)

    '''# Set the cuts you wish to apply
    # If you don't do this the defaults are used
    if config_file_name is not None:
        pmt_array.apply_setting(config_file_name)
        # print_settings(pmt_array)'''

    # Set up the containers for the summary
    apulse_rates = [[] for i in range(pmt_array.get_pmt_total_number())]
    apulse_rates_err = [[] for i in range(pmt_array.get_pmt_total_number())]
    he_apulse_rates = [[] for i in range(pmt_array.get_pmt_total_number())]
    he_apulse_rates_err = [[] for i in range(pmt_array.get_pmt_total_number())]
    dates = [[] for i in range(pmt_array.get_pmt_total_number())]

    out_files = [output_directory+'/apulse_num_ch0.txt', output_directory+'/apulse_num_ch1.txt']
    create_file(out_files[0])
    create_file(out_files[1])

    for i_file in tqdm.tqdm(range(filenames.size)):
        file = filenames[i_file][0].decode("utf-8")

        date = file.split("_")[0]
        voltage = int(file.split("_")[1].split("A")[1])

        if voltage == 1400:
            pass
        else:
            continue

        apulse_info = read_file(date, voltage, input_directory + "/" + file, pmt_array, output_directory)

        for i_om in range(pmt_array.get_pmt_total_number()):

            if len(apulse_info[i_om]) > 0:
                pass
            else:
                continue

            apulse_rate = apulse_info[i_om][0]["apulse_rate"]
            he_apulse_rate = apulse_info[i_om][0]["he_apulse_rate"]

            apulse_rate_err = apulse_info[i_om][0]["apulse_rate_err"]
            he_apulse_rate_err = apulse_info[i_om][0]["he_apulse_rate_err"]


            apulse_rates[i_om].append(apulse_rate)
            apulse_rates_err[i_om].append(apulse_rate_err/10)
            he_apulse_rates[i_om].append(he_apulse_rate)
            he_apulse_rates_err[i_om].append(he_apulse_rate_err/10)
            dates[i_om].append(int(date))

            write_to_file(out_files[i_om], '{},{},{},{},{}'.format(date, apulse_rate, apulse_rate_err, he_apulse_rate, he_apulse_rate_err))

    # Plot individual summaries
    for i_om in range(pmt_array.get_pmt_total_number()):

        if len(apulse_rates[i_om]) > 0:
            pass
        else:
            continue
        date = process_date(dates[i_om])

        try:
            start = np.where(date == 0)[0][0]
        except:
            start = np.where(date == 1)[0][0]
        mid = np.where(date == 98)[0][0]

        print(date)

        print("start:", start)

        plt.figure(num=None, figsize=(9, 5), dpi=80, facecolor='w', edgecolor='k')
        plt.errorbar(date[:start + 1], np.array(apulse_rates[i_om][:start + 1]), yerr=np.array(apulse_rates_err[i_om][:start + 1]),
                 fmt="g.", label="Atmospheric He")
        plt.errorbar(date[start+1:mid + 1], np.array(apulse_rates[i_om][start+1:mid + 1]), yerr=np.array(apulse_rates_err[i_om][start+1:mid + 1]),
                 fmt="b.", label="1% He")
        plt.errorbar(date[mid+1:], np.array(apulse_rates[i_om][mid+1:]), yerr=np.array(apulse_rates_err[i_om][mid+1:]),
                 fmt="r.", label="10% He")
        plt.axvline(date[start], 0, 100, ls='--', color='k')
        plt.axvline(date[mid], 0, 100, ls='--', color='k')
        plt.xlabel("exposure days relative to 191106")
        plt.ylabel("Afterpulse rate /%")
        plt.title(pmt_array.get_pmt_object_number(i_om).get_pmt_id() + " afterpulse rate vs exposure time")
        plt.grid()
        plt.ylim(10,90)
        plt.legend(loc='upper left')
        plt.savefig(output_directory + "/summary_plots/" +
                    pmt_array.get_pmt_object_number(i_om).get_pmt_id() + "_apulse_rate_vs_time")
        plt.close()

        plt.figure(num=None, figsize=(9, 5), dpi=80, facecolor='w', edgecolor='k')
        plt.errorbar(date[:start + 1], np.array(he_apulse_rates[i_om][:start + 1]), yerr=np.array(he_apulse_rates_err[i_om][:start + 1]),
                 fmt="g.", label="Atmospheric He")
        plt.errorbar(date[start + 1:mid + 1], np.array(he_apulse_rates[i_om][start + 1:mid + 1]), yerr=np.array(he_apulse_rates_err[i_om][start + 1:mid + 1]),
                 fmt="b.", label="1% He")
        plt.errorbar(date[mid + 1:], np.array(he_apulse_rates[i_om][mid + 1:]), yerr=np.array(he_apulse_rates_err[i_om][mid + 1:]),
                 fmt="r.", label="10% He")
        plt.axvline(date[start], 0, 100, ls='--', color='k')
        plt.axvline(date[mid], 0, 100, ls='--', color='k')
        plt.xlabel("exposure days relative to 191106")
        plt.ylabel("Normalised apulse number")
        plt.title(pmt_array.get_pmt_object_number(i_om).get_pmt_id() + " afterpulse rate vs exposure time")
        plt.grid()
        # plt.ylim(150,300)
        plt.legend(loc='lower right')
        plt.savefig(output_directory + "/summary_plots/" +
                    pmt_array.get_pmt_object_number(i_om).get_pmt_id() + "_he_apulse_rate_vs_time")
        plt.close()

    # Plot ratio
    x_date = []
    ratio = []
    ratio_err = []
    gain_ratio = []
    he_ratio = []
    he_ratio_err = []
    for i in range(len(dates[0])):
        for j in range(len(dates[1])):
            if dates[0][i] == dates[1][j]:
                x_date.append(dates[0][i])

                if apulse_rates[1][j] == 0:
                    pass
                else:
                    ratio.append(apulse_rates[0][i] / apulse_rates[1][j])

                if he_apulse_rates[1][j] == 0:
                    pass
                else:
                    he_ratio.append(he_apulse_rates[0][i] / he_apulse_rates[1][j])

                break

    x_date = process_date(x_date)

    plt.plot(x_date, ratio, "k.")
    plt.axvline(98, color="r", ls="--")
    plt.axvline(0, color="b", ls="--")
    plt.xlabel("exposure days relative to 191106")
    plt.ylabel("Ratio apulse rate Ch0/Ch1")
    plt.title("Ratio of after pulse rates of CH 0 & 1 vs time")
    plt.grid()
    #plt.xlim(np.amin(np.array(x_date)), np.amax(np.array(x_date)))
    #plt.ylim(0, 2)
    plt.savefig(output_directory + "/summary_plots/apulse_rate_ratio_vs_time")
    plt.close()

    plt.plot(x_date, he_ratio, "k.")
    plt.axvline(98, color="r", ls="--")
    plt.axvline(0, color="b", ls="--")
    plt.xlabel("exposure days relative to 191106")
    plt.ylabel("Ratio apulse rate Ch0/Ch1")
    plt.title("Ratio of after pulse rates of CH 0 & 1 vs time")
    plt.grid()
    #plt.xlim(np.amin(np.array(x_date)), np.amax(np.array(x_date)))
    # plt.ylim(0, 2)
    plt.savefig(output_directory + "/summary_plots/he_apulse_rate_ratio_vs_time")
    plt.close()
def plot_base_drift():
    data = pd.read_csv(
        "/Users/williamquinn/Desktop/PMT_Project/res_vs_time.csv",
        header=0,
        dtype={
            0: int,
            1: int,
            2: float,
            3: float,
            4: float,
            5: int,
            6: float,
            7: float
        },
        engine='python')
    data["time"] = process_date(data["date"])
    data = data[data["base_mean"] > 900]

    fig1 = plt.figure(figsize=figsize, facecolor='white')
    #frame1 = fig1.add_axes((.125, .3, .55, .6))

    data_ch0 = data[data["pmt"] == 0]
    exposed_fit = fit_straight_line(data_ch0['time'].values,
                                    data_ch0['base_mean'].values,
                                    data_ch0['base_sig'].values,
                                    guess=[0, 0])
    plt.errorbar(data_ch0['time'].values,
                 data_ch0['base_mean'].values,
                 yerr=data_ch0['base_sig'].values,
                 fmt='.',
                 label='Exposed',
                 markersize=3,
                 capsize=1,
                 linewidth=1,
                 capthick=1)
    plt.plot([data_ch0['time'].values[0], data_ch0['time'].values[-1]],
             linear([data_ch0['time'].values[0], data_ch0['time'].values[-1]],
                    *exposed_fit["popt"]),
             'k-',
             zorder=10)

    data_ch1 = data[data["pmt"] == 1]
    control_fit = fit_straight_line(data_ch1['time'].values,
                                    data_ch1['base_mean'].values,
                                    data_ch1['base_sig'].values,
                                    guess=[0, 0])
    plt.errorbar(data_ch1['time'].values,
                 data_ch1['base_mean'].values,
                 yerr=data_ch1['base_sig'].values,
                 fmt='.',
                 label='Control',
                 markersize=3,
                 capsize=1,
                 linewidth=1,
                 capthick=1)
    plt.plot([data_ch1['time'].values[0], data_ch1['time'].values[-1]],
             linear([data_ch1['time'].values[0], data_ch1['time'].values[-1]],
                    *control_fit["popt"]),
             'k-',
             zorder=10)

    plt.xlabel('Days from 1% He Onset')
    plt.ylabel('Voltage /mV')
    plt.fill_between([-100, 0], [1000, 1000],
                     alpha=0.1,
                     facecolor='green',
                     label='Atmospheric He')
    plt.fill_between([0, 98], [1000, 1000],
                     alpha=0.1,
                     facecolor='blue',
                     label='1% He')
    plt.fill_between([98, 500], [1000, 1000],
                     alpha=0.1,
                     facecolor='red',
                     label='10% He')
    plt.xlim(-40, 430)
    plt.ylim(978, 981)

    plt.legend(loc='best', bbox_to_anchor=(1.0, 1))
    plt.tight_layout()
    plt.savefig("/Users/williamquinn/Desktop/PMT_Project/baseline_drift.pdf")
    plt.close(fig1)

    plt.figure(figsize=figsize)
    plt.xlabel('Days from 1% He Onset')
    plt.ylabel('PCT Change /%')
    returns_ch0 = data_ch0['base_mean'].pct_change(1) * 100
    returns_ch0.plot(label='Exposed')
    returns_ch1 = data_ch1['base_mean'].pct_change(1) * 100
    returns_ch1.plot(label='Control')
    plt.legend(loc='best')
    plt.tight_layout()
    plt.savefig("/Users/williamquinn/Desktop/PMT_Project/baseline_pct.pdf")
    plt.close()

    dataframe = pd.concat([
        pd.DataFrame(data_ch0['base_mean'].values).shift(1),
        pd.DataFrame(data_ch0['base_mean'].values)
    ],
                          axis=1)
    dataframe.columns = ['t-1', 't+1']
    result0 = dataframe.corr()
    print(result0)
    dataframe = pd.concat([
        pd.DataFrame(data_ch1['base_mean'].values).shift(1),
        pd.DataFrame(data_ch1['base_mean'].values)
    ],
                          axis=1)
    dataframe.columns = ['t-1', 't+1']
    result1 = dataframe.corr()
    print(result1)

    plt.figure(figsize=figsize)
    lag_plot(data_ch0['base_mean'],
             label=r'Exposed $\rho$={:.2f}'.format(result0['t-1'][1]),
             alpha=0.5)
    plt.legend(loc='best')
    plt.tight_layout()
    plt.savefig(
        "/Users/williamquinn/Desktop/PMT_Project/baseline_cor_exposed.pdf")

    plt.figure(figsize=figsize)
    lag_plot(data_ch1['base_mean'],
             label=r'Control $\rho$={:.2f}'.format(result1['t-1'][1]),
             alpha=0.5)
    plt.legend(loc='best')
    plt.tight_layout()
    plt.savefig(
        "/Users/williamquinn/Desktop/PMT_Project/baseline_cor_control.pdf")
    '''autocorrelation_plot(data_ch0['base_mean'])
    plt.grid()
    plt.show()'''
    '''# create lagged dataset
    values = pd.DataFrame(data_ch0['base_mean'].values)
    dataframe = pd.concat([values.shift(1), values], axis=1)
    dataframe.columns = ['t-1', 't+1']
    # split into train and test sets
    X = dataframe.values
    train, test = X[1:len(X) - 7], X[len(X) - 7:]
    train_X, train_y = train[:, 0], train[:, 1]
    test_X, test_y = test[:, 0], test[:, 1]

    # persistence model
    def model_persistence(x):
        return x

    # walk-forward validation
    predictions = []
    for x in test_X:
        yhat = model_persistence(x)
        predictions.append(yhat)
    test_score = mean_squared_error(test_y, predictions)
    print('Test MSE: %.3f' % test_score)
    # plot predictions vs expected
    plt.plot(test_y, label='Test')
    plt.plot(predictions, label='Prediction')
    plt.legend(loc='best')
    plt.show()'''
    '''X = data_ch0['base_mean'].values
    train, test = X[1:len(X) - 7], X[len(X) - 7:]
    # train autoregression
    model = AutoReg(train, lags=7)
    model_fit = model.fit()
    print('Coefficients: %s' % model_fit.params)
    # make predictions
    predictions = model_fit.predict(start=len(train), end=len(train) + len(test) - 1, dynamic=False)
    for i in range(len(predictions)):
        print('predicted=%f, expected=%f' % (predictions[i], test[i]))
    rmse = np.sqrt(mean_squared_error(test, predictions))
    print('Test RMSE: %.3f' % rmse)
    # plot results
    plt.plot(test, label='test')
    plt.plot(predictions, label='prediction')
    plt.legend()
    plt.show()'''
    '''data = pd.read_csv("/Users/williamquinn/Desktop/PMT_Project/res_vs_time.csv", header=0,
                       dtype={0: int, 1: int, 2: float, 3: float, 4: float, 5: int, 6: float, 7: float},
                       engine='python')
    data['date'] = data['date'].astype(str)
    data = data[data["pmt"] == 0]
    f = []
    for date in data['date'].values:
        new_date = date[4] + date[5] + '/' + date[2] + date[3] + '/' + '20' + date[0] + date[1]
        f.append(new_date)
    data['date'] = pd.DatetimeIndex(f, dayfirst=True)
    data.set_index('date', inplace=True)
    data = data[~data.index.duplicated()]
    data = data.asfreq('D')
    data["base_mean"] = data["base_mean"].fillna(data["base_mean"].mean())'''
    '''decomposed = seasonal_decompose(data['base_mean'], model='additive')
    decomposed.plot()  # See note below about this
    plt.show()'''

    # data['stationary'] = data['base_mean'].diff()
    '''decomposed = seasonal_decompose(data['stationary'][1:], model='additive')
    decomposed.plot()  # See note below about this
    plt.show()'''
    '''# create train/test datasets
def plot_res():
    data = pd.read_csv(
        "/Users/williamquinn/Desktop/PMT_Project/res_vs_time.csv",
        header=0,
        dtype={
            0: int,
            1: int,
            2: float,
            3: float,
            4: float,
            5: int,
            6: float,
            7: float
        },
        engine='python')
    data["time"] = process_date(data["date"])
    data = data[(data['date'] == 191023) | (data['date'] == 200212) |
                (data['date'] == 200429)
                | (data['date'] == 200717) | (data['date'] == 201015) |
                (data['date'] == 201216)]

    plt.figure(figsize=figsize, facecolor='white')

    sel_dates = [191023, 200212, 200429, 200717, 201015, 201216]
    chi_cut = 10
    data_ch0 = data[data["pmt"] == 0]
    x, y, dy = data_ch0[data_ch0['chi_2'] / data_ch0['ndof'] < chi_cut]['time'].values, \
               data_ch0[data_ch0['chi_2'] / data_ch0['ndof'] < chi_cut]['res'].values * 100, \
               data_ch0[data_ch0['chi_2'] / data_ch0['ndof'] < chi_cut]['res_err'].values * 100

    exposed_fit = fit_straight_line(x, y, dy, guess=[0, 0])
    plt.errorbar(x,
                 y,
                 yerr=dy,
                 fmt='k.',
                 label='Exposed',
                 markersize=3,
                 capsize=1,
                 linewidth=1,
                 capthick=1)
    plt.plot([x[0], x[-1]], linear([x[0], x[-1]], *exposed_fit["popt"]), 'r-')

    chi_cut = 10
    data_ch1 = data[data["pmt"] == 1]
    x, y, dy = data_ch1[data_ch1['chi_2'] / data_ch1['ndof'] < chi_cut]['time'].values, \
               data_ch1[data_ch1['chi_2'] / data_ch1['ndof'] < chi_cut]['res'].values * 100, \
               data_ch1[data_ch1['chi_2'] / data_ch1['ndof'] < chi_cut]['res_err'].values * 100
    control_fit = fit_straight_line(x, y, dy, guess=[0, 0])
    plt.errorbar(x,
                 y,
                 yerr=dy,
                 fmt='.',
                 label='Control',
                 markersize=3,
                 capsize=1,
                 linewidth=1,
                 capthick=1,
                 color='grey',
                 ecolor='grey')
    plt.plot([x[0], x[-1]], linear([x[0], x[-1]], *control_fit["popt"]), 'r-')

    plt.ylim(1.5, 5)

    plt.xlabel('Days from 1% He Onset')
    plt.ylabel('Resolution at 1MeV /%')
    plt.fill_between([-100, 0], [5, 5],
                     alpha=0.1,
                     facecolor='green',
                     label='Atmospheric He')
    plt.fill_between([0, 98], [5, 5],
                     alpha=0.1,
                     facecolor='blue',
                     label='1% He')
    plt.fill_between([98, 500], [5, 5],
                     alpha=0.1,
                     facecolor='red',
                     label='10% He')
    plt.xlim(-30, 430)
    plt.legend(loc='best')
    plt.tight_layout()
    plt.savefig("/Users/williamquinn/Desktop/PMT_Project/res.pdf")
    plt.close()
示例#7
0
def main():
    args = io_parse_arguments()
    data_file_Ch0_name = args.i + "resolution_vs_date_Ch0.txt"
    data_file_Ch1_name = args.i + "resolution_vs_date_Ch1.txt"

    try:
        data_file_Ch0 = open(data_file_Ch0_name, 'r')
        data_file_Ch1 = open(data_file_Ch1_name, 'r')
    except FileNotFoundError as fnf_error:
        print(fnf_error)
        raise Exception("Error opening data file")

    data_Ch0 = np.loadtxt(data_file_Ch0_name, delimiter=',', dtype={
        'names': ('unix', 'date', 'timestamp', 'mu', 'mu_err', 'sigma', 'sigma_err', 'res', 'chi_err'),
        'formats': ('i4', 'i4', 'i4', 'f4', 'f4', 'f4', 'f4', 'f4', 'f4')}, unpack=True)

    data_Ch1 = np.loadtxt(data_file_Ch1_name, delimiter=',',
                          dtype={'names': (
                              'unix', 'date', 'timestamp', 'mu', 'mu_err', 'sigma', 'sigma_err', 'res', 'chi_err'),
                              'formats': ('i4', 'i4', 'i4', 'f4', 'f4', 'f4', 'f4', 'f4', 'f4')}, unpack=True)

    data = [data_Ch0, data_Ch1]
    dates = [data_Ch0[1], data_Ch1[1]]
    day_nums = [process_date(data_Ch0[1]), process_date(data_Ch1[1])]
    exposures = [process_exposure(data_Ch0[1]), process_exposure(data_Ch1[1])]
    mus = [data_Ch0[3], data_Ch1[3]]
    mu_errs = [data_Ch0[4], data_Ch1[4]]
    sigs = [data_Ch0[5], data_Ch1[5]]
    sig_errs = [data_Ch0[6], data_Ch1[6]]
    res = [data_Ch0[7], data_Ch1[7]]
    res_errs = [res[0] * np.sqrt((sig_errs[0] / sigs[0]) ** 2 + (mu_errs[0] / mus[0]) ** 2),
               res[1] * np.sqrt((sig_errs[1] / sigs[1]) ** 2 + (mu_errs[1] / mus[1]) ** 2)]
    chis = [data_Ch0[8], data_Ch1[8]]

    p_guess = [0.02420914, 3]
    p_bounds = [[0, 0], [1, 4]]

    filter_lists = [[], []]

    for i in range(2):
        x = day_nums[i]
        filter_list = []
        for chi_2 in chis[i]:
            if chi_2 < 10:
                filter_list.append(True)
            else:
                filter_list.append(False)
        for index,element in enumerate(x):
            if element < 0:
                filter_list[index] = False
            else:
                pass
        filter_lists[i] = filter_list
        x_array = np.linspace(np.amin(x[filter_list]), np.amax(x[filter_list]), 10000)

        popt, pcov = curve_fit(linear, x[filter_list], res[i][filter_list],
                               sigma=res_errs[i][filter_list],
                               p0=p_guess, bounds=p_bounds, maxfev=5000)

        chi_2 = chi2(linear(x[filter_list], *popt),
                     res_errs[i][filter_list],
                     res[i][filter_list],
                     2)

        print(popt, pcov, chi_2)

        fig, ax1 = plt.subplots()
        ax1.set_title("1MeV PMT Resolution Ch{}".format(i))
        ax1.grid(True)
        color = 'tab:red'
        plt.errorbar(x[filter_list],res[i][filter_list],
                     res_errs[i][filter_list],
                     fmt='.',
                     color=color)
        plt.plot(x_array, linear(x_array, *popt), 'g')
        if i ==0:
            plt.axvline(98, color='r', ls='--')
            plt.axvline(0, color='b', ls='--')
        ax1.text(0, 3, 'linear fit: y = ({:.4f}±{:.4f})*x + ({:.3f}±{:.3f}) chi2R: {:.3f}'.format(popt[0],
                                                                                                      np.sqrt(
                                                                                                          pcov[0][0]),
                                                                                                      popt[1],
                                                                                                      np.sqrt(
                                                                                                          pcov[1][1]),
                                                                                                      chi_2))

        ax1.set_xlabel("Exposure Time /days")
        ax1.set_ylabel("1Mev Resolution /%", color=color)
        ax1.set_ylim(2, 4.25)
        ax1.tick_params(axis='y', labelcolor=color)

        color = 'tab:blue'
        ax2 = ax1.twinx()
        ax2.plot(x[filter_list], chis[i][filter_list], '.', color=color)
        ax2.set_ylabel('Chi2 of bismuth 1MeV fit', color=color)  # we already handled the x-label with ax1
        ax2.tick_params(axis='y', labelcolor=color)
        ax2.set_ylim(0, 10)
        fig.tight_layout()

        plt.savefig("/Users/willquinn/Desktop/resolution_vs_date_time_" + str(i))
        plt.close()

    for i in range(2):
        x = exposures[i]
        filter_list = []
        for chi_2 in chis[i]:
            if chi_2 < 10:
                filter_list.append(True)
            else:
                filter_list.append(False)
        for index,element in enumerate(x):
            if element < 0.01:
                filter_list[index] = False
            else:
                pass
        filter_lists[i] = filter_list
        x_array = np.linspace(np.amin(x[filter_list]), np.amax(x[filter_list]), 10000)

        popt, pcov = curve_fit(linear, x[filter_list], res[i][filter_list],
                               sigma=res_errs[i][filter_list],
                               p0=p_guess, bounds=p_bounds, maxfev=5000)

        chi_2 = chi2(linear(x[filter_list], *popt),
                     res_errs[i][filter_list],
                     res[i][filter_list],
                     2)

        print(popt, pcov, chi_2)

        fig, ax1 = plt.subplots()
        ax1.set_title("1MeV PMT Resolution Ch{}".format(i))
        ax1.grid(True)
        color = 'tab:red'
        plt.errorbar(x[filter_list],res[i][filter_list],
                     res_errs[i][filter_list],
                     fmt='.',
                     color=color)
        plt.plot(x_array, linear(x_array, *popt), 'g')
        if i == 0:
            plt.axvline(1/10 + 97/100, color='r', ls='--')
            plt.axvline(29/1000000, color='b', ls='--')
        ax1.text(0, 3, 'linear fit: y = ({:.4f}±{:.4f})*x + ({:.3f}±{:.3f}) chi2R: {:.3f}'.format(popt[0],
                                                                                                      np.sqrt(
                                                                                                          pcov[0][0]),
                                                                                                      popt[1],
                                                                                                      np.sqrt(
                                                                                                          pcov[1][1]),
                                                                                                      chi_2))

        ax1.set_xlabel("Exposure Time /atm-days")
        ax1.set_ylabel("1Mev Resolution /%", color=color)
        ax1.set_ylim(2, 4.25)
        ax1.tick_params(axis='y', labelcolor=color)

        color = 'tab:blue'
        ax2 = ax1.twinx()
        ax2.plot(x[filter_list], chis[i][filter_list], '.', color=color)
        ax2.set_ylabel('Chi2 of bismuth 1MeV fit', color=color)  # we already handled the x-label with ax1
        ax2.tick_params(axis='y', labelcolor=color)
        ax2.set_ylim(0, 10)
        fig.tight_layout()

        plt.savefig("/Users/willquinn/Desktop/resolution_vs_date_exp_" + str(i))
        plt.close()

    x_t = []
    x_e = []
    y = []
    y_err = []
    for i in range(day_nums[0].size):
        for j in range(day_nums[1].size):
            if day_nums[0][i] == day_nums[1][j]:
                x_t.append(day_nums[0][i])
                x_e.append(exposures[0][i])
                y.append(res[0][i]/res[1][j])
                y_err.append(res[0][i]/res[1][j] * np.sqrt( (res_errs[0][i]/res[0][i])**2 + (res_errs[1][j]/res[1][j])**2 ))
                break

    plt.errorbar(x_t, y, yerr=y_err, fmt="k.")
    plt.axvline(98, color="r", ls="--")
    plt.axvline(0, color="b", ls="--")
    plt.xlabel("Exposure /days")
    plt.ylabel("Ratio res_Ch0/res_Ch1")
    plt.title("Ratio of resolution of CH 0 & 1 vs time")
    plt.grid()
    plt.xlim(np.amin(np.array(x_t)), np.amax(np.array(x_t)))
    plt.ylim(0,2)
    plt.savefig("/Users/willquinn/Desktop/resolution_ratio_time")


    '''x_ch0 = process_date(data_Ch0[1])
    x_ch1 = process_date(data_Ch1[1])
    x_array = np.linspace(-30, 145, 10000)'''

    '''plt.errorbar(x_ch0, data_Ch0[3], data_Ch0[4], fmt='.', color='b')
    plt.title("1MeV PMT Charge Ch0")
    plt.xlabel("Exposure Time atm-days")
    plt.ylabel("1Mev Charge /pC")
    plt.ylim(32, 42)
    #plt.xscale('log')
    plt.grid(True)
    plt.show()

    plt.errorbar(x_ch1, data_Ch1[3], data_Ch1[4], fmt='.', color='b')
    plt.title("1MeV PMT Charge Ch1")
    plt.xlabel("Exposure Time /days")
    plt.ylabel("1Mev Charge /pC")
    plt.ylim(32, 42)
    #plt.xscale('log')
    plt.grid(True)
    plt.show()'''

    '''popt_0, pcov_0 = curve_fit(linear, x_ch0, data_Ch0[7],
示例#8
0
def main():
    # Handle the input arguments:
    ##############################
    args = pmt_parse_arguments()
    input_directory = args.i
    # config_file_name = args.c
    output_directory = args.o
    ##############################

    out_files = [
        output_directory + '/res_vs_time_ch0.txt',
        output_directory + '/res_vs_time_ch1.txt'
    ]
    create_file(out_files[0])
    create_file(out_files[1])

    filenames_txt = input_directory + "/filenames.txt"

    try:
        print(">>> Reading data from file: {}".format(filenames_txt))
        date_file = open(filenames_txt, 'r')
    except FileNotFoundError as fnf_error:
        print(fnf_error)
        raise Exception("Error opening data file {}".format(filenames_txt))

    filenames = np.loadtxt(filenames_txt,
                           delimiter=',',
                           dtype={
                               'names': ['filename'],
                               'formats': ['S100']
                           },
                           unpack=True)

    topology = [2, 1]
    pmt_array = PMT_Array(topology, "summary")
    pmt_array.set_pmt_id("GAO607", 0)
    pmt_array.set_pmt_id("GAO612", 1)
    '''# Set the cuts you wish to apply
    # If you don't do this the defaults are used
    if config_file_name is not None:
        pmt_array.apply_setting(config_file_name)
        # print_settings(pmt_array)'''

    # Set up the containers for the summary
    resolutions = [[] for i in range(pmt_array.get_pmt_total_number())]
    resolutions_err = [[] for i in range(pmt_array.get_pmt_total_number())]
    dates = [[] for i in range(pmt_array.get_pmt_total_number())]
    gains = [[] for i in range(pmt_array.get_pmt_total_number())]
    gains_err = [[] for i in range(pmt_array.get_pmt_total_number())]
    baseline_means = [[] for i in range(pmt_array.get_pmt_total_number())]
    baseline_sigs = [[] for i in range(pmt_array.get_pmt_total_number())]
    fit_chi2 = [[] for i in range(pmt_array.get_pmt_total_number())]

    for i_file in tqdm.tqdm(range(filenames.size)):
        file = filenames[i_file][0].decode("utf-8")

        date = file.split("_")[0]
        voltage = int(file.split("_")[1].split("A")[1])

        if voltage == 1000:
            pass
        else:
            continue

        fit_parameters = read_file(date, voltage, input_directory + "/" + file,
                                   pmt_array, output_directory)

        for i_om in range(pmt_array.get_pmt_total_number()):

            if len(fit_parameters[i_om]) > 0:
                pass
            else:
                continue

            mu = fit_parameters[i_om][0]["mu"]
            mu_err = fit_parameters[i_om][0]["mu_err"]
            sig = fit_parameters[i_om][0]["sig"]
            sig_err = fit_parameters[i_om][0]["sig_err"]
            chi_2 = fit_parameters[i_om][0]["chi2"]
            gain = fit_parameters[i_om][0]["gain"]
            baseline_mean = fit_parameters[i_om][0]["base_mu"]
            baseline_sig = fit_parameters[i_om][0]["base_sig"]

            res, res_err = get_resolution(mu, mu_err, sig, sig_err)

            resolutions[i_om].append(res)
            resolutions_err[i_om].append(res_err)
            dates[i_om].append(int(date))
            gains[i_om].append(gain)
            baseline_means[i_om].append(baseline_mean)
            baseline_sigs[i_om].append(baseline_sig)
            fit_chi2[i_om].append(chi_2)

            write_to_file(
                out_files[i_om],
                '{},{},{},{},{}'.format(date, res, res_err, chi_2, gain))

    # Plot individual summaries
    for i_om in range(pmt_array.get_pmt_total_number()):

        if len(resolutions[i_om]) > 0:
            pass
        else:
            continue
        date = process_date(dates[i_om])

        try:
            start = np.where(date == 0)[0][0]
        except:
            start = np.where(date == 1)[0][0]
        mid = np.where(date == 98)[0][0]

        # print("start:",start)

        plt.plot(date[:start + 1],
                 np.array(gains[i_om][:start + 1]) * 2,
                 "g.",
                 label="Atmospheric He")
        plt.plot(date[start + 1:mid + 1],
                 np.array(gains[i_om][start + 1:mid + 1]) * 2,
                 "b.",
                 label="1% He")
        plt.plot(date[mid + 1:],
                 np.array(gains[i_om][mid + 1:]) * 2,
                 "r.",
                 label="10% He")
        plt.axvline(date[start], 0, 100, ls='--', color='k')
        plt.axvline(date[mid], 0, 100, ls='--', color='k')
        plt.xlabel("exposure days relative to 190611")
        plt.ylabel("PMT gain at 1Mev /mV")
        plt.title(
            pmt_array.get_pmt_object_number(i_om).get_pmt_id() +
            " Gain at 1MeV vs exposure time")
        plt.grid()
        plt.ylim(150, 300)
        plt.legend(loc='lower right')
        plt.savefig(output_directory + "/summary_plots/" +
                    pmt_array.get_pmt_object_number(i_om).get_pmt_id() +
                    "_gains_vs_time.png")
        plt.close()

        plt.errorbar(date,
                     baseline_means[i_om],
                     yerr=baseline_sigs[i_om],
                     fmt='k.-',
                     ecolor='r')
        plt.grid()
        plt.xlabel("exposure days relative to 190611")
        plt.ylabel("Baseline mean /mV")
        plt.title(
            pmt_array.get_pmt_object_number(i_om).get_pmt_id() +
            " Baseline mean vs exposure time")
        plt.savefig(output_directory + "/summary_plots/" +
                    pmt_array.get_pmt_object_number(i_om).get_pmt_id() +
                    "_baseline_mean_vs_time.png")

        plt.close()
        '''plt.plot(date, baseline_sigs[i_om])
        plt.xlabel("exposure days relative to 190611")
        plt.ylabel("Baseline std-dev")
        plt.title(pmt_array.get_pmt_object_number(i_om).get_pmt_id() + " Baseline std-dev vs exposure time")
        plt.savefig(output_directory + "/summary_plots/" +
                    pmt_array.get_pmt_object_number(i_om).get_pmt_id() + "_baseline_sigma_vs_time")
        plt.close()'''

        res_filter = []
        for i_date in range(len(date)):
            if 1 < resolutions[i_om][i_date] < 3.75 and fit_chi2[i_om][
                    i_date] < 10:
                res_filter.append(True)
            else:
                res_filter.append(False)

        popt, pcov = curve_fit(
            linear,
            np.array(date[start:])[res_filter[start:]],
            np.array(resolutions[i_om][start:])[res_filter[start:]],
            sigma=np.array(resolutions_err[i_om][start:])[res_filter[start:]],
            p0=[0.001, 2],
            bounds=[[0, 0], [0.002, 3.5]],
            maxfev=500000)
        x_array = np.linspace(date[start], np.amax(date), 2)
        chi_2 = chi2(
            np.array(resolutions[i_om][start:])[res_filter[start:]],
            np.array(resolutions_err[i_om][start:])[res_filter[start:]],
            linear(date[start:][res_filter[start:]], *popt), len(popt))

        plt.errorbar(date[:start + 1],
                     resolutions[i_om][:start + 1],
                     yerr=resolutions_err[i_om][:start + 1],
                     fmt="g.",
                     label="Atmospheric He")
        plt.plot(np.array(date[start:])[res_filter[start:]],
                 np.array(resolutions[i_om][start:])[res_filter[start:]],
                 'ko',
                 label="used values")
        plt.errorbar(date[start + 1:mid + 1],
                     resolutions[i_om][start + 1:mid + 1],
                     yerr=resolutions_err[i_om][start + 1:mid + 1],
                     fmt="b.",
                     label="1% He")
        plt.errorbar(date[mid + 1:],
                     resolutions[i_om][mid + 1:],
                     yerr=resolutions_err[i_om][mid + 1:],
                     fmt="r.",
                     label="10% He")
        plt.plot(x_array, linear(x_array, *popt), 'k-')
        plt.xlabel(
            "exposure days relative to 190611 \n $y = (${:.1e}$ ± ${:.0e})$x + (${:.1e}$ ± ${:.0e}$)$ $\chi^2_R = {:.2}$"
            .format(popt[0], np.sqrt(pcov[0, 0]), popt[1], np.sqrt(pcov[1, 1]),
                    chi_2))
        plt.ylabel("Resolution at 1MeV /% $\sigma / \mu$")
        plt.title(
            pmt_array.get_pmt_object_number(i_om).get_pmt_id() +
            " Resolution vs exposure time")
        plt.axvline(date[start], 0, 100, ls='--', color='k')
        plt.axvline(date[mid], 0, 100, ls='--', color='k')
        plt.grid()
        plt.ylim(2, 4.5)
        plt.xlim(np.amin(date), np.amax(date))
        plt.legend(loc='upper right')
        plt.tight_layout()
        plt.savefig(output_directory + "/summary_plots/" +
                    pmt_array.get_pmt_object_number(i_om).get_pmt_id() +
                    "_resolution_vs_time.png")
        plt.close()

        plt.plot(np.array(date[start:])[res_filter[start:]],
                 np.array(fit_chi2[i_om][start:])[res_filter[start:]],
                 'ko',
                 label="used values")
        plt.plot(date[:start + 1],
                 fit_chi2[i_om][:start + 1],
                 "g.",
                 label="Atmospheric He")
        plt.plot(date[start + 1:mid + 1],
                 fit_chi2[i_om][start + 1:mid + 1],
                 "b.",
                 label="1% He")
        plt.plot(date[mid + 1:],
                 fit_chi2[i_om][mid + 1:],
                 "r.",
                 label="10% He")
        plt.xlabel("exposure days relative to 190611")
        plt.ylabel("$\chi^2_R$")
        plt.title(
            pmt_array.get_pmt_object_number(i_om).get_pmt_id() +
            " Resolution fit $\chi^2_R$ vs exposure time")
        plt.grid()
        plt.axvline(date[start], 0, 100, ls='--', color='k')
        plt.axvline(date[mid], 0, 100, ls='--', color='k')
        plt.legend(loc='upper right')
        plt.xlim(np.amin(date), np.amax(date))
        plt.ylim(0, 10)
        plt.tight_layout()
        plt.savefig(output_directory + "/summary_plots/" +
                    pmt_array.get_pmt_object_number(i_om).get_pmt_id() +
                    "_resolution_vs_time_chi2.png")
        plt.close()

    # Plot ratio
    x_date = []
    ratio = []
    ratio_err = []
    gain_ratio = []
    for i in range(len(dates[0])):
        for j in range(len(dates[1])):
            if dates[0][i] == dates[1][j]:
                x_date.append(dates[0][i])
                ratio.append(resolutions[0][i] / resolutions[1][j])
                ratio_err.append(
                    resolutions[0][i] / resolutions[1][j] *
                    np.sqrt((resolutions_err[0][i] / resolutions[0][i])**2 +
                            (resolutions_err[1][j] / resolutions[1][j])**2))
                gain_ratio.append(gains[0][i] / gains[1][j])
                break

    popt, pcov = curve_fit(linear,
                           x_date,
                           ratio,
                           sigma=ratio_err,
                           p0=[1, 1],
                           bounds=[[0, 0], [10, 10]])
    x_date = process_date(x_date)
    x_array = np.linspace(np.amin(x_date), np.amax(x_date), 2)
    chi_2 = chi2(ratio, ratio_err, linear(x_date, *popt), 2)

    plt.errorbar(x_date, ratio, yerr=ratio_err, fmt="k.")
    plt.plot(
        x_array,
        linear(x_array, *popt),
        "g-",
        label=
        "$y = (${:.1e}$ ± ${:.0e})$\\times x + (${:.1e}$ ± ${:.0e}$) \chi^2_R = {:.2}$"
        .format(popt[0], np.sqrt(pcov[0, 0]), popt[1], np.sqrt(pcov[1, 1]),
                chi_2))
    plt.axvline(98, color="r", ls="--")
    plt.axvline(0, color="b", ls="--")
    plt.xlabel("exposure days relative to 190611")
    plt.ylabel("Ratio res_Ch0/res_Ch1")
    plt.title("Ratio of resolution of CH 0 & 1 vs time")
    plt.grid()
    plt.xlim(np.amin(np.array(x_date)), np.amax(np.array(x_date)))
    plt.ylim(0, 2)
    plt.savefig(output_directory +
                "/summary_plots/resolution_ratio_vs_time.png")
    plt.close()

    plt.plot(x_date, gain_ratio, "k.")
    plt.axvline(98, color="r", ls="--")
    plt.axvline(0, color="b", ls="--")
    plt.xlabel("exposure days relative to 190611")
    plt.ylabel("Ratio gain_Ch0/gain_Ch1")
    plt.title("Ratio of gain of CH 0 & 1 vs time")
    plt.grid()
    plt.xlim(np.amin(np.array(x_date)), np.amax(np.array(x_date)))
    plt.ylim(0.7, 1)
    plt.savefig(output_directory + "/summary_plots/gain_ratio_vs_time.png")
    plt.close()

    print("<<<< FINISHED >>>")
示例#9
0
def plot_aapc_vs_charge(dates, ratios, output_directory: str, name: str):
    date_0 = process_date(dates[0])
    date_1 = process_date(dates[1])
    try:
        start = np.where(date_0 == 0)[0][0]
    except:
        start = np.where(date_0 == 1)[0][0]
    mid = np.where(date_0 == 98)[0][0]

    ratio_0 = np.array(ratios[0])
    ratio_1 = np.array(ratios[1])

    x = np.array(date_0[mid + 1:]) - date_0[mid + 1:][0]
    y = np.array(ratio_0[mid + 1:])
    yerr = np.array(ratio_0[mid + 1:]) * 0.01
    pars, errs, chi = root_fit(x, y, yerr)

    fig1 = plt.figure(num=None,
                      figsize=(9, 5),
                      dpi=80,
                      facecolor='w',
                      edgecolor='k')
    frame1 = fig1.add_axes((.1, .3, .8, .6))
    frame1.set_xticklabels([])
    plt.errorbar(date_0[:start + 1],
                 ratio_0[:start + 1],
                 zorder=0,
                 yerr=ratio_0[:start + 1] * 0.01,
                 fmt="g.",
                 label="Atmospheric He")
    plt.errorbar(date_0[start + 1:mid + 1],
                 ratio_0[start + 1:mid + 1],
                 zorder=0,
                 yerr=ratio_0[start + 1:mid + 1] * 0.01,
                 fmt="b.",
                 label="1% He")
    plt.errorbar(date_0[mid + 1:],
                 ratio_0[mid + 1:],
                 zorder=0,
                 yerr=ratio_0[mid + 1:] * 0.01,
                 fmt="r.",
                 label="10% He")
    plt.errorbar(date_1,
                 ratio_1,
                 zorder=0,
                 yerr=ratio_1 * 0.01,
                 fmt="C1.",
                 label="Control")
    plt.plot(date_0[mid + 1:],
             Model().func(x, pars),
             'k-',
             label='model',
             zorder=10)
    plt.axvline(date_0[start], 0, 100, ls='--', color='k')
    plt.axvline(date_0[mid], 0, 100, ls='--', color='k')

    handles, labels = plt.gca().get_legend_handles_labels()
    patch = matplotlib.patches.Patch(color='white',
                                     label=r'$P_0 =$ {:.4e} ± {:.0e}'.format(
                                         pars[0], errs[0]))
    patch_1 = matplotlib.patches.Patch(color='white',
                                       label=r'$P_1 =$ {:.4e} ± {:.0e}'.format(
                                           pars[1], errs[1]))
    patch_2 = matplotlib.patches.Patch(color='white',
                                       label=r'$L =$ {:.0f} ± {:.0f}'.format(
                                           pars[2] / (3600 * 24),
                                           errs[2] / (3600 * 24)))
    patch_3 = matplotlib.patches.Patch(
        color='white', label=r'$\chi^2_R =$ {:.2f}'.format(chi))
    handles.extend([patch, patch_1, patch_2, patch_3])

    plt.ylabel("charge ratio")
    plt.title("Pulse charge apulse charge ratio")
    plt.grid()
    plt.legend(handles=handles, loc='upper left')
    plt.xlim(-30, 420)

    frame2 = fig1.add_axes((.1, .1, .8, .2))
    plt.xlabel("exposure days relative to 06/11/2019")
    plt.axhline(0, ls='--', color='black')
    plt.ylabel("(model-data)/model")
    plt.grid()
    plt.xlim(-30, 420)
    plt.errorbar(
        date_0[mid + 1:],
        (Model().func(x, pars) - ratio_0[mid + 1:]) / Model().func(x, pars),
        yerr=ratio_0[mid + 1:] * 0.01 / Model().func(date_0[mid + 1:], pars),
        fmt="k.")

    plt.savefig(output_directory + "/summary_plots/" +
                "ap_charge_charge_vs_time" + name + ".pdf")
    plt.close()