# Calculating cross-section
        # [0: ap_1, 1: ap_2, 2: cross_x, 3: cross_y]
        ap_cross = fn.crossings(ap_cross, aps)

        # Calculate distance between APs and cross point
        # [0: ap_1, 1: ap_2, 2: cross_x, 3: cross_y, 4: dist_1, 5: dist_2]
        ap_cross = fn.crossings_dist(ap_cross, aps)

        # Find angles from both APs
        # [0: ap_1, 1: ap_2, 2: cross_x, 3: cross_y, 4: dist_1, 5: dist_2, 6: angle_1, 7: angle_2]
        ap_cross = fn.crossings_angles(ap_cross, aps)

        # Calculate total SD
        # [0: ap_1, 1: ap_2, 2: cross_x, 3: cross_y, 4: dist_1, 5: dist_2, 6: angle_1, 7: angle_2, 8: SD_max, 9: SD_min]
        ap_cross = fn.add_sd(ap_cross)

        # Calculate position_error(crossing) in order to find optimal weights
        # [0: ap_1, 1: ap_2, 2: cross_x, 3: cross_y, 4: dist_1, 5: dist_2, 6: angle_1, 7: angle_2, 8: SD_max, 9: SD_min]
        # [10: pos_error]

        for i in range(len(ap_cross)):
            ap_cross[i].append(math.sqrt((ap_cross[i][2] - mobile[0]) ** 2 +
                                         (ap_cross[i][3] - mobile[1]) ** 2))
            # Save parameters
            pos_error.append(ap_cross[i][-1])
            sd_max.append(ap_cross[i][8])
            sd_min.append(ap_cross[i][9])
            sd_tot.append(math.sqrt(ap_cross[i][8]**2 + ap_cross[i][9]**2))

    print k
示例#2
0
i = 0
for crossing in couples:

    # Calculating cross-section
    x_cross[:, i], y_cross[:, i] = fn.crossings(slopes, y_intercept, crossing)

    # Calculate distance between APs and cross point
    dist0[:, i], dist1[:, i] = fn.crossings_dist(track.aps, crossing, x_cross[:, i], y_cross[:, i])

    # Find angles from both APs
    angle0[:, i] = local_angle_sim[:, crossing[0]]
    angle1[:, i] = local_angle_sim[:, crossing[1]]

    # Calculate total SD
    sdmax[:, i], sdmin[:, i] = fn.add_sd(angle0[:, i], angle1[:, i], dist0[:, i], dist1[:, i])

    i += 1

# Calculate position_error(crossing) in order to find optimal weights
weights = fn.find_weights(sdmax)

# remove not valid weights
weights_valid = weights * remove_not_valid

# Calculate grid
pos = fn.estimate_xy(x_cross, y_cross, weights, remove_not_valid)

# Remove points from outside, still doesn't work
pos = fn.remove_outside(pos, boundaries)
示例#3
0
y_intercept = track.aps[track.valid_ants, 1] * np.ones(slopes.shape) - slopes * track.aps[track.valid_ants, 0]

couples = itertools.combinations(track.valid_ants, 2)
for crossing in couples:
    # Calculating cross-points
    x_cross, y_cross = fn.crossings(slopes, y_intercept, crossing)

    # Calculate distance between exp.aps and cross point
    dist0, dist1 = fn.crossings_dist(track.aps, crossing, x_cross, y_cross)

    # Find angles from both exp.aps
    angle0 = doa.ap_timed_pred[:, crossing[0]]
    angle1 = doa.ap_timed_pred[:, crossing[1]]

    # Calculate total SD
    sdmax, sdmin = fn.add_sd(angle0, angle1, dist0, dist1)

weights = fn.find_weights(sdmax)

# Calculate position_error(crossing) in order to find optimal weights
# [x, y]
pos = fn.estimate_xy(x_cross, y_cross, weights)

# Change NaN to last known position
pos = fn.remove_nan(pos)

# Remove points from outside
# pos = fn.remove_outside(pos)

# Holt's filtering algorithm
holt = np.zeros(pos.shape)