def __init__(self, max_freq=30.,max_linewidth=1.,N=1000, center_freq = 0., tau = 0.3,r = 0.8): Time_Delay_Network.__init__(self, max_freq,max_linewidth,N,center_freq) self.tau = tau self.delays = [tau] self.r = r self.M1=np.matrix([[r]]) self.E = lambda z: np.exp(-z*self.tau) self.T = lambda z: np.matrix([(np.exp(-z*self.tau) - self.r)/ (1.-self.r* np.exp(-z*self.tau))]) self.T_denom = lambda z: (1.-self.r* np.exp(-z*self.tau)) self.Tp_denom = lambda z: der(self.T_denom,z)
def __init__(self, max_freq=10.,max_linewidth=10.,N=1000, center_freq = 0., r=0.9,tau = 1.): Time_Delay_Network.__init__(self, max_freq,max_linewidth,N,center_freq) self.r = r self.delays = [tau] e = lambda z: np.exp(-z*tau) dim = 2 self.M1 = np.matrix([[0,r],[r,0]]) self.E = lambda z: np.matrix([[e(z),0],[0,e(z)]]) self.T_denom = lambda z: (1.-r**2* e(z)**2) self.T = lambda z: -r*np.eye(dim) + ((1.-r**2.)/self.T_denom(z)) * \ np.matrix([[r*e(z)**2,e(z)],[e(z),r*e(z)**2]]) self.Tp_denom = lambda z: der(self.T_denom,z)
def __init__( self, max_freq=60., max_linewidth=1., N=5000, center_freq=0., r1=0.9, r2=0.4, r3=0.8, tau1=0.1, tau2=0.23, tau3=0.1, tau4=0.17, ): Time_Delay_Network.__init__(self, max_freq, max_linewidth, N, center_freq) self.r1 = r1 self.r2 = r2 self.r3 = r3 self.delays = [tau1, tau2, tau3, tau4] t1 = np.sqrt(1 - r1**2) t2 = np.sqrt(1 - r2**2) t3 = np.sqrt(1 - r3**2) dim = 4 M1 = np.matrix([[0, -r1, 0, 0], [-r2, 0, t2, 0], [0, 0, 0, -r3], [t2, 0, r2, 0]]) self.M1 = M1 M2 = np.matrix([[t1, 0], [0, 0], [0, t3], [0, 0]]) M3 = np.matrix([[0, t1, 0, 0], [0, 0, 0, t3]]) M4 = np.matrix([[r1, 0], [0, r3]]) E = lambda z: np.matrix([[np.exp(-tau1 * z), 0, 0, 0], [0, np.exp(-tau2 * z), 0, 0], [0, 0, np.exp(-tau3 * z), 0], [0, 0, 0, np.exp(-tau4 * z)]]) self.E = E self.T_denom = lambda z: la.det(np.eye(dim) - M1 * E(z)) self.Tp_denom = lambda z: der(self.T_denom, z) self.T = lambda z: M3 * E(z) * la.inv(np.eye(dim) - M1 * E(z) ) * M2 + M4
def __init__(self, max_freq=60.,max_linewidth=1.,N=5000, center_freq = 0., r1=0.9,r2=0.4,r3=0.8, tau1 = 0.1, tau2 = 0.23,tau3 = 0.1,tau4 = 0.17, ): Time_Delay_Network.__init__(self, max_freq,max_linewidth,N,center_freq) self.r1 = r1 self.r2 = r2 self.r3 = r3 self.delays =[tau1,tau2,tau3,tau4] t1 = np.sqrt(1-r1**2) t2 = np.sqrt(1-r2**2) t3 = np.sqrt(1-r3**2) dim = 4 M1 = np.matrix([[0,-r1,0,0], [-r2,0,t2,0], [0,0,0,-r3], [t2,0,r2,0]]) self.M1 = M1 M2 = np.matrix([[t1,0], [0,0], [0,t3], [0,0]]) M3 = np.matrix([[0,t1,0,0], [0,0,0,t3]]) M4 = np.matrix([[r1,0], [0,r3]]) E = lambda z: np.matrix([[np.exp(-tau1*z),0,0,0], [0,np.exp(-tau2*z),0,0], [0,0,np.exp(-tau3*z),0], [0,0,0,np.exp(-tau4*z)]]) self.E = E self.T_denom = lambda z: la.det(np.eye(dim) - M1*E(z)) self.Tp_denom = lambda z: der(self.T_denom,z) self.T = lambda z: M3*E(z)*la.inv(np.eye(dim) - M1*E(z))*M2+M4
def __init__(self, max_freq=30., max_linewidth=1., N=1000, center_freq=0., tau=0.3, r=0.8): Time_Delay_Network.__init__(self, max_freq, max_linewidth, N, center_freq) self.tau = tau self.delays = [tau] self.r = r self.M1 = np.matrix([[r]]) self.E = lambda z: np.exp(-z * self.tau) self.T = lambda z: np.matrix([(np.exp(-z * self.tau) - self.r) / (1. - self.r * np.exp(-z * self.tau))]) self.T_denom = lambda z: (1. - self.r * np.exp(-z * self.tau)) self.Tp_denom = lambda z: der(self.T_denom, z)
def __init__(self, max_freq=10., max_linewidth=10., N=1000, center_freq=0., r=0.9, tau=1.): Time_Delay_Network.__init__(self, max_freq, max_linewidth, N, center_freq) self.r = r self.delays = [tau] e = lambda z: np.exp(-z * tau) dim = 2 self.M1 = np.matrix([[0, r], [r, 0]]) self.E = lambda z: np.matrix([[e(z), 0], [0, e(z)]]) self.T_denom = lambda z: (1. - r**2 * e(z)**2) self.T = lambda z: -r*np.eye(dim) + ((1.-r**2.)/self.T_denom(z)) * \ np.matrix([[r*e(z)**2,e(z)],[e(z),r*e(z)**2]]) self.Tp_denom = lambda z: der(self.T_denom, z)
def __init__(self, max_freq=100.,max_linewidth=3.,N=5000,center_freq = 0.): Time_Delay_Network.__init__(self, max_freq,max_linewidth,N,center_freq) tau1 = 0.1 tau2 = 0.039 tau3 = 0.11 tau4 = 0.08 self.delays = [tau1,tau2,tau3,tau4] r = 0.9 t = np.sqrt(1-r**2) dim = 4 M1 = np.matrix([[0,0,-r,0], [r,0,0,0], [0,r,0,t], [t,0,0,0]]) self.M1 = M1 M2 = np.matrix([[t,0], [0,t], [0,0], [0,-r]]) M3 = np.matrix([[0,0,t,0], [0,t,0,-r]]) M4 = np.matrix([[r,0], [0,0]]) E = lambda z: np.matrix([[np.exp(-tau1*z),0,0,0], [0,np.exp(-tau2*z),0,0], [0,0,np.exp(-tau3*z),0], [0,0,0,np.exp(-tau4*z)]]) self.E = E self.T_denom = lambda z: la.det(np.eye(dim) - M1*E(z)) self.Tp_denom = lambda z: der(self.T_denom,z) self.T = lambda z: M3*E(z)*la.inv(np.eye(dim) - M1*E(z))*M2+M4
def __init__( self, max_freq=50., max_linewidth=3., N=1000, center_freq=0., ): Time_Delay_Network.__init__(self, max_freq, max_linewidth, N, center_freq) tau1 = 0.1 tau2 = 0.039 tau3 = 0.11 tau4 = 0.08 self.delays = [tau1, tau2, tau3, tau4] r = 0.9 t = np.sqrt(1 - r**2) dim = 4 M1 = np.matrix([[0, 0, -r, 0], [r, 0, 0, 0], [0, r, 0, t], [t, 0, 0, 0]]) self.M1 = M1 M2 = np.matrix([[t, 0], [0, t], [0, 0], [0, -r]]) M3 = np.matrix([[0, 0, t, 0], [0, t, 0, -r]]) M4 = np.matrix([[r, 0], [0, 0]]) E = lambda z: np.matrix([[np.exp(-(tau1 + tau4) * z), 0, 0, 0], [0, np.exp(-(tau2 - tau4) * z), 0, 0], [0, 0, np.exp(-tau3 * z), 0], [0, 0, 0, 1.]]) self.E = E self.T_denom = lambda z: la.det(np.eye(dim) - M1 * E(z)) self.Tp_denom = lambda z: der(self.T_denom, z) self.T = lambda z: M3 * E(z) * la.inv(np.eye(dim) - M1 * E(z) ) * M2 + M4