def main(): for i in range(111, 112): numberOfRepets = 800000 learningRate = 5 inputNodes = 6 hiddenNodes = 13 outputNodes = 2 print( "numOfCycles:\tLearningRate:\tinputNodes:\thiddenNodes:\toutputNodes:" ) print("-->", numberOfRepets, "\t-->", learningRate, "\t\t--> 6\t\t-->", hiddenNodes, "\t\t--> 2") weightsIH, biasH, weightsHO, biasO = f.setting(inputNodes, hiddenNodes, outputNodes, numberOfRepets, learningRate) inputArray, expectedArray = f.dataAccessing() testinput = inputArray[i, :] print("\n\n\ttestinput:\t\t\texpectedArray:") print(testinput, "\t", expectedArray[i, :]) print("\n\n\n") f.predict(testinput, weightsIH, biasH, weightsHO, biasO) print("\n\n\n\n\n\n\n\n\n") input("press any key to finish the program")
def check_spam(sender, data, pred =[]): with window("Simple SMS Spam Filter"): if pred == []: #runs only once - the the button is first clicked #and pred[-1] widget doesn't exist add_spacing(count=12) add_separator() add_spacing(count=12) #collect input, pre-process and get prediction input_value = get_value("Input") input_value = pre_process(input_value) pred_text, text_colour = predict(input_value) #store prediction inside the pred list pred.append(pred_text) #display prediction to user add_text(pred[-1], color=text_colour) else: #hide prediction widget hide_item(pred[-1]) #collect the current user input and evaluate it input_value = get_value("Input") input_value = pre_process(input_value) pred_text, text_colour = predict(input_value) #store prediction inside the pred list pred.append(pred_text) add_text(pred[-1], color=text_colour)
def predict(self): self.user_id = int(self.lineEdit.text()) self.topk = int(self.comboBox.currentText()) data = f.predict(self.user_id,self.topk) self.showRes.setText(str(data))
def test(net, dataloader, all_prototypes, gamma): logger = logging.getLogger(__name__) distance_sum = 0.0 correct = 0 for i, (feature, label) in enumerate(dataloader): feature, label = feature.to(net.device), int(label) # extract abstract feature through CNN. feature = net(feature).view(1, -1) predicted_label, probability, min_distance = functions.predict( feature, all_prototypes, gamma) if label == predicted_label: correct += 1 distance_sum += min_distance logger.debug( "%5d: Label: %d, Prediction: %d, Probability: %7.4f, Distance: %7.4f, Accuracy: %7.4f", i + 1, label, predicted_label, probability, min_distance, correct / (i + 1)) return correct / len(dataloader), distance_sum / len(dataloader)
def main(): start_time = time() in_arg = get_input_args() device = set_device(in_arg.gpu) prob, classes = func.predict(in_arg.image_dir, in_arg.checkpoint, device, in_arg.top_k) names = [] try: with open(in_arg.category_names, 'r') as f: cat_to_name = json.load(f) for clas in classes: names.append(cat_to_name[str(clas)]) except: pass if len(names) != 0: for i in range(len(classes)): print("Classes: ", classes[i], names[i], " Probabilty: ", prob[i]) elif not names: if len(names) == 0: for i in range(len(classes)): print("Classes: ", classes[i], " Probabilty: ", prob[i])
def main(): #Set up argument parser for console input parser = argparse.ArgumentParser(description='Predict category of flower') parser.add_argument('image_path', help='path of image to be analyzed') parser.add_argument( 'checkpoint_dir', help= 'directory containing /checkpoint.pth with pre-trained model to be used for prediction' ) parser.add_argument('--top_k', help='number of top K most likely classes', default=1, type=int) parser.add_argument('--category_names', help='Select JSON file') parser.add_argument('--gpu', help='Enable GPU', action='store_true') args = parser.parse_args() #Load pre-trained model from checkpoint loaded_model, optimizer, criterion, epochs = fu.load_checkpoint( args.checkpoint_dir + '/checkpoint.pth') #Set mode device = torch.device( 'cuda' if torch.cuda.is_available() and args.gpu == True else 'cpu') print('Device is: ', device) #Inference calculation probs, classes = fu.predict(args.image_path, loaded_model, args.top_k, device, args.category_names) print(probs) print(classes)
def train(features: np.ndarray, targets: np.ndarray, theta0: float, theta1: float, learning_rate: float) -> Tuple[float, float]: """Train the weights with given features and targets, returns updated weights.""" predictions = predict(theta0, theta1, features) errors = error(predictions, targets) delta0 = learning_rate * (1 / errors.shape[0]) * np.sum(errors) delta1 = learning_rate * (1 / errors.shape[0]) * np.sum(errors * features) return (theta0 - delta0, theta1 - delta1)
async def predict_api(file: UploadFile = File(...)): extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png") if not extension: return "Image must be jpg or png format!" image = read_imagefile(await file.read()) prediction = predict(image) return prediction
def main(): mil = askMileage() if (mil is None): print("Alright I warned you. Bye.") return ("None") try: theta = readTheta() pred = predict(mil, theta) print("This very powerful algorithm predicts the price to be around " + str(round(pred)) + " of whatever money that is.") except TypeError: print( "Yeah no I haven't been trained before so I'm gonna try to guess: how about " + str(np.random.randint(-99999999, 99999999)) + "?") print("Seriously tho, run python train.py first.") return (None) predict(mil, theta)
def classify(image): num_px = 64 my_image = scipy.misc.imresize(image, size=(num_px, num_px)) my_image = my_image.reshape((1, num_px * num_px * 3)).T prediction = predict(data["w"], data["b"], my_image) return np.squeeze(prediction) == 1
def Algorithm(inputData, outputData, outputList, parameters, param): train_x = inputData[:, 0:4000] train_y = outputData[:, 0:4000] test_x = inputData[:, 4000:4600] test_y = outputData[:, 4000:4600] test_y_List = outputList if (param == True): startTime = time.time() parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations=10000, print_cost=True) endTime = time.time() t1 = time.time() pred_test, cost = functions.predict(test_x, test_y, parameters) t2 = time.time() avgError = functions.averageError(pred_test, test_y) outList.append(pred_test[0]) outList.append(test_y[0]) outList.append([cost]) outList.append([avgError]) if (param == True): outList.append([endTime - startTime]) outList.append([t2 - t1]) costList = [] averageErrorList = [] for j in range(0, np.shape(test_y_List)[0]): pred_test, cost = functions.predict(test_x, test_y_List[j][:, 4000:4600], parameters) test_x = np.concatenate((test_x[1:6, :], pred_test, test_x[6:, :]), 0) costList.append(cost) averageError = functions.averageError(pred_test, test_y_List[j][:, 4000:4600]) averageErrorList.append(averageError) outList.append(costList) outList.append(averageErrorList)
def check_spam(sender, data, pred=[]): with window("Simple SMS Spam Filter"): if pred == []: add_spacing(count=12) add_separator add_spacing(count=12) input_value = get_value("Input") input_value = pre_process(input_value) pred_text, text_colour = predict(input_value) pred.append(pred_text) add_text(pred[-1], color=text_colour) else: hide_item(pred[-1]) input_value = get_value("Input") input_value = pre_process(input_value) pred_text, text_colour = predict(input_value) pred.append(pred_text) add_text(pred[-1], color=text_colour)
def main(): # user inputs from command line in_arg = get_input_args() # load model checkpoint model_checkpoint = load_checkpoint(in_arg.checkpoint) # load and process unseen image data new_image = process_image(in_arg.image_path) # predict on unseen image data probs, classes = predict(new_image, model_checkpoint, in_arg.topk, in_arg.gpu) # get labels get_labels(probs, classes, model_checkpoint)
def predict(): if request.method == 'POST': name = request.form["s"] audio = request.files['file'] audio.save(secure_filename("prediction.wav")) return render_template('predict.html', prediction=functions.predict( "prediction.wav", str(name)), n=name) else: name = request.args.get("s") return render_template('predict.html', s=name, prediction="")
def check(): try: url = request.args.get("url") if url == "": raise Exception("Wrong url") val = process(url) return {"status": str(predict(val))}, 200 except Exception as e: return {"status": -2}, 500
def CostList(parameters): costList = [] averageErrorList = [] for i in range(0 + predictionData.p, 136 - predictionData.p): X, Y, Y_List = predictionData.DataSet(predictionData.postMile[i]) pred_test, cost = functions.predict(X[:, 4000:4600], Y[:, 4000:4600], parameters) averageError = functions.averageError(pred_test, Y[:, 4000:4600]) costList.append(cost) averageErrorList.append(averageError) outList.append(costList) outList.append(averageErrorList)
def test(images, labels): try: all_theta = np.fromfile(theta_filename, sep='\n').reshape((classifiers_number, features_number + 1)) # Adding fake feature images = np.concatenate((np.ones((images.shape[0], 1)), images), axis=1) predictions = predict(all_theta, images) correct_predictions = sum(map(int, (labels == predictions).reshape(labels.shape[0]))) print '*** Testing results ***' print 'Total digits: %d' % images.shape[0] print 'Correctly predicted: %d' % correct_predictions print 'Percentage: %.2f%%' % (correct_predictions * 100. / images.shape[0]) except (IOError, ValueError) as e: print 'Failed to read parameters from "%s". Error: %s' % (theta_filename, str(e)) print 'File does not exists or corrupted. Run "train" command to recover it'
def model(X_train, Y_train, X_test, Y_test, iterations=2500, learning_rate=0.005): w = np.zeros((X_train.shape[0], 1)) b = 0 parameters, grads, costs = functions.optimize(w, b, X_train, Y_train, iterations=iterations, learning_rate=learning_rate) w = parameters["w"] b = parameters["b"] Y_prediction_test = functions.predict(w, b, X_test) Y_prediction_train = functions.predict(w, b, X_train) train_accuracy = 100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100 logging.info(f"train accuracy: {train_accuracy} %") test_accuracy = 100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100 logging.info(f"test accuracy: {test_accuracy} %") return { "costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train": Y_prediction_train, "w": w, "b": b, "learning_rate": learning_rate, "iterations": iterations }
def main(): model = uf.loadModel(checp) with open(cat_name, 'r') as json_file: cat_to_name = json.load(json_file) pts = uf.predict(image, model, top_k, gpu) labels = [cat_to_name[str(index + 1)] for index in np.array(pts[1][0])] probability = np.array(pts[0][0]) i = 0 while i < top_k: print("{} with a probability of {:.3f}".format(labels[i], probability[i])) i += 1 print("Done Predicting!")
def main(): # Get CLI arguments args = get_input_args() # Build model from checkpoint model = functions.load_checkpoint(args.checkpoint) # Get probabilities, labels and flower name from prediction function top_probs, top_labels, top_flowers = functions.predict( args.image_path, model, args.category_name, args.gpu, args.top_k) # Print result for i in zip(top_probs, top_labels, top_flowers): print(i)
def main() -> None: """Executes the program.""" kilometrage = input("Kilometrage: ") try: kilometrage = int(kilometrage) except: print("Cannot cast '{}' to float.".format(kilometrage)) exit(1) theta0, theta1 = get_weights() prediction = predict(theta0, theta1, kilometrage) print("Estimated price for {}kms: {:.4f}$".format(kilometrage, prediction)) if (theta0 == 0 and theta1 == 0): print( "Note: it seems that the model is not trained yet. Run train.py to set weights." )
def prediction_made(text): #It should be a button that send us back to prediction df = pd.DataFrame() df = get_10tweets(current_user.username) info_user = prepare_prediction(current_user.username, text) FC_pred, RT_pred = predict(info_user) RT_mean = df["RT_l10"][0] FAV_mean = df["FC_l10"][0] rt_bool = RT_mean >= RT_mean fv_bool = FAV_mean >= FAV_mean if rt_bool: RT_text = 'Great job!' else: RT_text = '' if fv_bool: FAV_text = 'Great job!' else: FAV_text = '' has = '' for m in re.finditer(r"#\w+", text): w = m.group(0) w = w.strip('#') has += w has += ',' has = has[:-1] no_has = '' for m in re.finditer(r"\s\w+", text): w = m.group(0) no_has += w # text = request.args.get('text') # some response showing the number of RT/FAVS return render_template('prediction/aftermath.html', RT=RT_mean, FAV=FAV_mean, text=text, RTaa=RT_text, FAVaa=FAV_text, rt_bool=rt_bool, fv_bool=fv_bool, FC_pred=FC_pred, RT_pred=RT_pred, has=has, nohas=no_has)
def predict_review(trie): review_typed = '' while True: next_chars = stdin.readline().rstrip('\r\n') if len(next_chars) == 0: return review_typed += next_chars preds = f.predict(review_typed, trie) try: print('{}{}{}{}{}'.format(preds[0], sep, preds[1], sep, preds[2])) stdout.flush() except Exception: print( ' {} {} '.format(sep, sep) ) # in the event that anything weird happens, pass three blank predictions stdout.flush()
def main(): train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset( ) m_train = train_set_x_orig.shape[0] ##### m=n (DUNNO WHY BUT IT IS) 209 m_test = test_set_x_orig.shape[0] ##### same for this one 50 num_px = train_set_x_orig.shape[2] ##### 64 (cuz image is 64x64) train_set_x_flatten = train_set_x_orig.reshape( train_set_x_orig.shape[0], -1).T ### at this point we need to turn X to make it vertical test_set_x_flatten = test_set_x_orig.reshape( test_set_x_orig.shape[0], -1).T ### and make it from (209,64,64,3) into (12288,209) train_set_x = train_set_x_flatten / 255. #### now every pixel is nomore 0-255, it's 0-1 (make's a little sense here, but useful when input is various test_set_x = test_set_x_flatten / 255. d = F.model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations=2000, learning_rate=0.005, print_cost=False) F.analysis([0.01, 0.001], train_set_x, train_set_y, test_set_x, test_set_y) ################## #############EXAMPLE my_image = "123.jpg" # change this to the name of your image file ## END CODE HERE ## # We preprocess the image to fit your algorithm. fname = "images/" + my_image image = np.array(ndimage.imread(fname, flatten=False)) my_image = scipy.misc.imresize(image, size=(num_px, num_px)).reshape( (1, num_px * num_px * 3)).T my_predicted_image = F.predict(d["w"], d["b"], my_image) plt.imshow(image) print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)), ].decode("utf-8") + "\" picture.")
def main(): #Args args1 = arg_parser_test() #Load the model model=load_model(args1.checkpoint) #label with open(args1.cat_name_dir,'r') as json_file: cat_to_name = json.load(json_file) #Prediction probabilities = predict(args1.image_path, model, args1.top_k) labels = [cat_to_name[str(index + 1)] for index in np.array(probabilities[1][0])] probability = np.array(probabilities[0][0]) i=0 while i < args1.top_k: print("{} with a probability of {}".format(labels[i], probability[i])) i += 1 print("Predictiion is done !")
def main(): #print("hello world") for luck in_arg = predict_input_args() print(" image =", in_arg.image_dir, "\n model checkpoint =", in_arg.load_dir, "\n top k =", in_arg.top_k, "\n device =", in_arg.device, "\n json =", in_arg.json) model, optimizer = load_model(in_arg.load_dir, in_arg.device) probs, classes, labels = predict(in_arg.image_dir, model, in_arg.json, in_arg.top_k, in_arg.device) results = dict(zip(labels, probs)) print("-" * 40) for x in results: print(" {:20s} {:.2f}%".format(x.title(), results[x] * 100))
def main(): in_arg = get_input_args() images_data = data_loaders(in_arg.data_dir) if in_arg.gpu is True: if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print("Using CPU since GPU is not available") model = load_checkpoint(in_arg.checkpoint) cat_to_name = cat_names(in_arg.cat_name) probs, classes = predict(in_arg.image, model, device, in_arg.top_k) #df = dict(sorted(zip(names, probs))) names = [cat_to_name[name] for name in classes] print(probs, [cat_to_name[name] for name in classes]) p = probs.index(max(probs)) print('Predicted flower in image is {} with a probability of {}'.format( names[p], probs[p]))
def hello(): c = 0 target_parameter = None for key in request.args.keys(): if key == 'target': target_parameter = request.args[key] ret_res = {} for key in request.files.keys(): print(key) request.files["{}".format(key)].save(image_vault) arr, cand = pp_nd_ss(image_vault) predictions = predict(model, arr) res = max_predict(predictions, cand, label_encoder, target_parameter, api=True) ret_res[c] = res c = c + 1 return jsonify(ret_res)
def main(): args = parser_fun_test() with open(args.cat_to_name, 'r') as f: cat_to_name = json.load(f) # load the model loaded = torch.load("trained_model.pth") model = load_model(loaded) # prediction probabilities = predict(args.image_path, model, args.top_k, 'gpu') labels = [ cat_to_name[str(index + 1)] for index in np.array(probabilities[1][0]) ] probability = np.array(probabilities[0][0]) i = 0 while i < args.top_k: print("{} with a probability of {:.5f}".format(labels[i], probability[i])) i += 1 print("Predictiion is done !")
def main(): parser = argparse.ArgumentParser( description='This program predicts a flower name from an image') parser.add_argument('image_path', type=str, help='Image path') parser.add_argument('checkpoint', type=str, help='Checkpoint') parser.add_argument('--top_k', type=int, default='1', help='Top k probablities') parser.add_argument('--category_names', type=str, default='cat_to_name.json', help='Mappings of indices and class names') parser.add_argument('--gpu', action='store_true', help='Use GPU', default=False) args = parser.parse_args() device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu' ) if args.gpu else 'cpu' with open(args.category_names, 'r') as f: cat_to_name = json.load(f) model_load, optimizer_load, scheduler_load, epoch = load_checkpoint( device, args.checkpoint) probs, classes, flowers = predict(model_load, process_image(args.image_path), cat_to_name, args.top_k) print("Predictions for {}: {}".format(args.image_path, flowers)) probs = np.array(probs)[0] print("Probablities: {}".format(probs))
plt.title('Terrain patch') ax.set_xlabel(r'$x$') ax.set_ylabel(r'$y$') ax.set_zlabel(r'$z$') fig.colorbar(surf, shrink=0.35, aspect=10) plt.show() plt.show() #Fit OLS, Ridge or Lasso, predict training data x1 = x.ravel() y1 = y.ravel() z1 = patch.ravel() degrees = 5 beta = OLS(x1, y1, z1, degrees) #Change to Lasso or Ridge z_ = predict(x1, y1, beta, degrees) ''' Test dependency of lambda on the ridge and lasso regression lds = np.linspace(0,1,10) degree = 5 error = np.zeros(10) R2 = np.zeros(10) for i, ld in enumerate(lds): beta = Ridge(x1, y1, z1, degree, ld) z_ = predict(x1, y1, beta, degree) error[i] = np.mean( (z_ - z1)**2 ) R2[i] = 1 - np.sum( (z_ - z1)**2 )/np.sum( (z1- np.mean(z1))**2 )
def predict(self, vehicle): ''' Display predicted range of vehicle ''' print('Prediction for {0}: {1:.2f} miles'.format(vehicle['reg_no'], FN.predict(vehicle)))