def main(name_file, UB): MAX_ITER = 500000 MAX_TIME_SEC = 7200 costs, incidence_matrix = my_io.read_file_format_or_library(name_file) columns = transform_incidence2column(incidence_matrix) #passo0 dual_lagrangean = [1]*len(incidence_matrix) start = colect_time.cpu_time() set_covering = SetCoveringLagrangeanProblem(costs=costs, incidence_matrix=incidence_matrix,columns=columns, dual_lagrangean=dual_lagrangean) set_covering.create_cplex_problem() set_covering.c.solve() m1 = 0.001 x = set_covering.c.solution.get_values(set_covering.names_variables) v = subtract_two_vectors([1]*len(incidence_matrix), multiply_matrix_by_vector(incidence_matrix, x)) z = x[:] dual_lagrangean_aux = dual_lagrangean[:] w = v[:] p = dual_lagrangean[:] epsilon = 0 t = 1 k = 1 s = 0.1 objective = 0 while True: #passo1 dual_lagrangean = add_two_vectors(dual_lagrangean_aux, number_multiply_vector(s, w)) ro = s * product_dot(w, w) + abs(product_dot(w, subtract_two_vectors(dual_lagrangean_aux,p))) + epsilon if stop(w,dual_lagrangean_aux,p) or UB-objective < 1 or colect_time.cpu_time() - start > MAX_TIME_SEC or t > MAX_ITER: end = colect_time.cpu_time() break #passo2: objective, x = resolve_sub_problem_lagrangean(costs=costs, incidence_matrix=incidence_matrix,columns=columns, dual_lagrangean=dual_lagrangean) v = subtract_two_vectors([1]*len(incidence_matrix), multiply_matrix_by_vector(incidence_matrix, x)) #passo3 objective_aux, x_aux = resolve_sub_problem_lagrangean(costs=costs, incidence_matrix=incidence_matrix,columns=columns, dual_lagrangean=dual_lagrangean_aux) if objective >= objective_aux + m1 * ro: dual_lagrangean_aux = dual_lagrangean[:] k = k + 1 #passo4 s = 0.5*((UB-objective)/product_dot(w,w)) alpha = resolve_problem_aux(v, w, s, product_dot(v, subtract_two_vectors(dual_lagrangean_aux,dual_lagrangean)), product_dot(w, subtract_two_vectors(dual_lagrangean_aux, p))+epsilon) z = add_two_vectors(number_multiply_vector(alpha, x),number_multiply_vector(1-alpha, z)) w = add_two_vectors(number_multiply_vector(alpha, v),number_multiply_vector(1-alpha, w)) p = add_two_vectors(number_multiply_vector(alpha, dual_lagrangean),number_multiply_vector(1-alpha, p)) aux = 1-alpha * product_dot(subtract_two_vectors(v, w), subtract_two_vectors(p, dual_lagrangean)) epsilon = alpha * aux + (1 - alpha) * epsilon t = t + 1 print name_file, objective, t, end
def test_add_two_vectors(self): vector1 = [5, 4, 3, 2, 1] vector2 = [1, 2, 3, 4, 5] result = [6, 6, 6, 6, 6] self.assertEqual(result, add_two_vectors(vector1, vector2))