示例#1
0
for root_dir in root_dirs:
    filtered_frame = input_frame[input_frame.root_dir == root_dir]
    samples_s      = sorted([a for a in filtered_frame.sample_dir.unique()])
    for sample in samples_s:
        for pressure in pressures:
            for voltage in voltages: 
                p_diff_color_map.reset()
                plt.ioff()
                plt.figure()
                plt.ioff()
                next_frame = filtered_frame[ (filtered_frame.sample_dir == sample) & (filtered_frame.pressure == pressure) & (filtered_frame.voltage == voltage)]                                  
                next_frame = next_frame.sort_values(by='temperature')

                if plot_p_diff:
                    plt.plot(next_frame.temperature.tolist(),next_frame.result.tolist(), color= p_diff_color_map.get_color(False), lw = 1, marker = 'o')
                    fplot.add_label('p_diff', p_diff_color_map.get_color(True), marker = 'o' )  
                if plot_p_BMP:
                    plt.plot(next_frame.temperature.tolist(),next_frame.p_BMP.tolist(), color = p_diff_color_map.get_color(False), lw = 1, marker = 'o')
                    fplot.add_label('p_BMP', p_diff_color_map.get_color(True), marker = 'o' ) 
                if plot_p_MSP:                               
                    plt.plot(next_frame.temperature.tolist(),next_frame.p_MSP.tolist(), color = p_diff_color_map.get_color(False), lw = 1, marker = 'o')
                    fplot.add_label('p_MSP', p_diff_color_map.get_color(True), marker = 'o' )                               

                plt.plot([-8,-5,0,10,22,40], [-700,-700,-700,-700,-500,-700], 'k', ls = '--')
                plt.plot([-8,-5,0,10,22,40], [ 700, 700, 700, 700, 500, 700], 'k', ls = '--')
                fplot.set_plot_config('Temperature [°C]', 'Pressure [mbar]', '{}; {}; {} bar; {} V'.format(root_dir.replace('_',' '), sample, pressure/1000 ,voltage), ylim = [-2000,None])                                       
                plt.savefig( '{}/{}/{}/{}/{}_{}_bar_{}_V.png'.format( cwd, results_dir, p_diff_graphs, p_diff_base, sample, pressure/1000, voltage))                      
                plt.close()
                print('Generating p_diff graphs ....... ({:02d}/{:02d})'.format(g_num, g_total), end="\r", flush=True)
                g_num += 1 
print('Generating p_diff graphs ....... ({:02d}/{:02d})'.format(g_num-1, g_total))
示例#2
0
     line, = axes.plot(numpy_2d_array[0],
                       numpy_2d_array[1],
                       color=cur_data.line_plot_settings_color,
                       linewidth=cur_data.line_plot_settings_line_width,
                       ls=cur_data.line_plot_settings_line_style,
                       marker=cur_data.line_plot_settings_marker,
                       ms=cur_data.line_plot_settings_marker_size)
 else:
     pass
 # =============================================================================
 # LINE-LABEL PLOT FOR EACH LINE
 # =============================================================================
 if cur_data.line_label_plot_settings_plot == "each" and cur_data.line_plot_settings_plot == "each":
     fplot.add_label(cur_data.labels_line[number], line.get_color(),
                     cur_data.line_label_plot_settings_line_width,
                     cur_data.line_label_plot_settings_line_style,
                     cur_data.line_label_plot_settings_marker,
                     cur_data.line_label_plot_settings_marker_size)
 else:
     pass
 # =============================================================================
 # DERIVATION LINE PLOT FOR EACH LINE
 # =============================================================================
 if cur_data.derivation_plot_settings_plot == "each" and cur_data.derivation_plot_settings_color == "random" and cur_data.derivation_calculation_settings_calculate:
     line2, = axes.plot(
         numpy_2d_array[0][low:high],
         derivation,
         color=c_map.get_der_color(),
         linewidth=cur_data.derivation_plot_settings_line_width,
         ls=cur_data.derivation_plot_settings_line_style,
         marker=cur_data.derivation_plot_settings_marker,
示例#3
0
        max_index, max_value = fdproc.maximum_index_calculation_by_index(
            time, force, 0, min_index)

        results_frame = pd.DataFrame(
            [[root_dir, sample_dir, filename, max_value]],
            columns=['root_dir', 'sample_dir', 'filename', 'max_force'])
        results_frames_list.append(results_frame)

        plt.figure()  # single figure
        plt.plot(time, force, c=c_map_single_graph.get_color(False), label='')
        plt.plot(time[min_index], force[min_index], 'r', marker=min_marker)
        plt.plot(time[max_index], force[max_index], 'k', marker=max_marker)
        fplot.set_plot_config(xa_label='Time [s]',
                              ya_label='Force [N]',
                              title='{}; {}'.format(root_dir, sample_dir))
        fplot.add_label(sample_dir, c_map_single_graph.get_color(False))
        fplot.add_label('maximum_force', 'k', 0, '-', max_marker, 6)
        fplot.add_label('minimum_force', 'r', 0, '-', min_marker, 6)
        plt.savefig('{}/{}/{}/{}_{}.png'.format(cwd, results_dir,
                                                single_file_graphs, root_dir,
                                                sample_dir))
        plt.close()

        plt.figure(number)  # dirr figure
        plt.plot(data_frame['sec'],
                 data_frame['N'],
                 c=c_map_root_graph.get_color(False),
                 label='')
        plt.plot(time[max_index], force[max_index], 'ko')

        plt.figure(len(unique_root_dirs) + 1)  # combined figure
示例#4
0
# =============================================================================
#
# =============================================================================
filesa = fio.get_files(path, contains=['A0'], extension=['csv'])
filesaa = fio.get_files(path, contains=['A1'], extension=['csv'])
filesa = filesa + filesaa

for file in filesa:
    print(file)
    dataframe = pd.read_csv(file, sep=';', decimal=',')
    weight = dataframe[r'Weight [g]'].tolist()
    time = dataframe.Time
    time = time.tolist()
    time = time_stamp_to_time_diff(time)
    plt.plot(time, weight, 'b')
fplot.add_label('A', 'b')

filesb = fio.get_files(path, contains=['B0'], extension=['csv'])
filesbb = fio.get_files(path, contains=['B1'], extension=['csv'])
filesb = filesb + filesbb

for file in filesb:

    print(file)
    dataframe = pd.read_csv(file, sep=';', decimal=',')
    weight = dataframe[r'Weight [g]'].tolist()
    time = dataframe.Time
    time = time.tolist()
    time = time_stamp_to_time_diff(time)
    plt.plot(time, weight, 'r')
fplot.add_label('B', 'r')
示例#5
0
                plt.figure()
                plt.ioff()
                next_frame = filtered_frame[
                    (filtered_frame.sample_dir == sample)
                    & (filtered_frame.pressure == pressure) &
                    (filtered_frame.voltage == voltage)]
                next_frame = next_frame.sort_values(by='temperature')

                if plot_p_diff:
                    plt.plot(next_frame.temperature.tolist(),
                             next_frame.result.tolist(),
                             color=p_diff_color_map.get_color(False),
                             lw=1,
                             marker='o')
                    fplot.add_label('p_diff',
                                    p_diff_color_map.get_color(True),
                                    marker='o')
                if plot_p_BMP:
                    plt.plot(next_frame.temperature.tolist(),
                             next_frame.p_BMP.tolist(),
                             color=p_diff_color_map.get_color(False),
                             lw=1,
                             marker='o')
                    fplot.add_label('p_BMP',
                                    p_diff_color_map.get_color(True),
                                    marker='o')
                if plot_p_MSP:
                    plt.plot(next_frame.temperature.tolist(),
                             next_frame.p_MSP.tolist(),
                             color=p_diff_color_map.get_color(False),
                             lw=1,
示例#6
0
samples      = sorted([ a for a in result_frame['sample'].unique()   ])
for sample in samples:
    next_frame = result_frame[result_frame['sample'] == sample]
    pressures     = sorted([ a for a in next_frame['pressure'].unique() ])
    for pressure in pressures:
        next_frame2 = next_frame[next_frame['pressure'] == pressure]       
        voltages     = sorted([ a for a in next_frame2['voltage'].unique()])
        for voltage in voltages: 
            last_frame = next_frame2[next_frame2['voltage'] == voltage]
           
            p_diff_color_map.reset()            
            plt.figure()
            last_frame = last_frame.sort_values(by='temperature')                                  

            plt.plot(last_frame.temperature,last_frame.pDiff, color= p_diff_color_map.get_color(False), lw = 1, marker = 'o', label = '')
            fplot.add_label('p_diff', p_diff_color_map.get_color(True), marker = 'o' )  
           
            for msp, msp_cor, msp_cor_new, temp, pDiff in zip(last_frame.valid_MSP_rate,  last_frame.valid_msp_rate_cor,last_frame.valid_msp_rate_cor2, last_frame.temperature, last_frame.pDiff ):
                plt.annotate("{} \n {} \n {}".format(msp, msp_cor, msp_cor_new), [temp, pDiff], fontsize = 16, fontweight='bold', color='red')

            plt.plot(last_frame.temperature,last_frame.pDiff_BMP, color = p_diff_color_map.get_color(False), lw = 1, marker = 'o', label = '')
            fplot.add_label('p_BMP', p_diff_color_map.get_color(True), marker = 'o' ) 
                         
            plt.plot(last_frame.temperature,last_frame.pDiff_MSP, color = p_diff_color_map.get_color(False), lw = 1, marker = 'o', label = '')
            fplot.add_label('p_MSP', p_diff_color_map.get_color(True), marker = 'o' )                               

            plt.plot([-8,-5,0,10,22,40], [-700,-700,-700,-700,-500,-700], 'k', ls = '--')
            plt.plot([-8,-5,0,10,22,40], [ 700, 700, 700, 700, 500, 700], 'k', ls = '--')
            plt.legend(loc = 'lower right')
            fplot.set_plot_config('Temperature [°C]', 'Pressure [mbar]',' {}; {} bar; {} V'.format( sample, pressure/1000 ,voltage/1000), ylim = [-2000,None])                                      
            plt.savefig( '{}/{}/{}/{}_{}_bar_{}_V.png'.format( cwd, results_dir, p_diff_graphs, sample, pressure/1000, voltage/1000))                      
示例#7
0
samples = sorted([a for a in hydra_frame['Ident No.'].unique()])

print('sample', ' ', 'volumetric', ' ', 'p_diff')
for sample in samples:
    p_diff = hydra_frame.loc[
        (hydra_frame['Ident No.'] == sample),
        ['066_Diff_BMP_VIS_P_Mess_6_0bar_MP4_Sp1']].values[0]
    volumetric = hydra_frame.loc[
        (hydra_frame['Ident No.'] == sample),
        ['006_BerechnetesHubvolumen_6_0bar_3_Sp1']].values[0]
    plt.plot(volumetric / volumetric_constant - 1,
             p_diff,
             color=c_map.get_color(False),
             marker='o',
             markeredgecolor='k')
    fplot.add_label(sample, c_map.get_color(True), 0, '-', 'o')

    print(sample, ' ', volumetric / volumetric_constant - 1, ' ', p_diff)

x = np.linspace(-0.08, 0.08, 20000)

over_200_ppm = 6372549.02 * x**6 - 800150.8296 * x**5 + 19541.8552 * x**4 + 562.4057315 * x**3 - 18.20980735 * x**2 - 9.135497395 * x**1 + 1.300099753 * x**0
over_10_ppm = 4017242.862 * x**6 - 438603.9335 * x**5 - 8783.299926 * x**4 + 1736.291492 * x**3 + 8.192154187 * x**2 - 10.47552085 * x**1 + 0.990573908 * x**0

under_200_ppm = -59264.74327 * x**6 - 4554.65587 * x**5 + 335.2822676 * x**4 + 57.22096531 * x**3 + 2.013566176 * x**2 - 8.579590974 * x**1 - 0.383176295 * x**0

under_10_ppm = -169755.1637 * x**6 - 13455.58466 * x**5 + 3216.230457 * x**4 + 89.40620783 * x**3 - 19.32913576 * x**2 - 8.298948559 * x**1 - 0.070463402 * x**0

aa = np.where(under_200_ppm < -0.5)[0][0]

start = np.where((x >= -0.04))[0][0]
示例#8
0
fplot.set_rc_params(font_size_offset=4)

path = r'X:/Dnox/Tesla/2017/E1700224-08/data/recording/ecr_samples.xlsx'
frame = pd.read_excel(path, usecols=[0, 1]).dropna()
ecr_maxima = frame["Maximum force"].tolist()

fplot.plot_swarm([ecr_maxima], [1], color='b')
fplot.plot_violin([ecr_maxima], [1])

path = r'X:/Dnox/Tesla/2017/E1700224-08/data/recording/serial_samples.xlsx'
frame = pd.read_excel(path, usecols=[0, 1]).dropna()
series_maxima = frame["Maximum force"].tolist()

fplot.plot_violin([series_maxima], [2], body_color='g')
fplot.plot_swarm([series_maxima], [2], color='g')

fplot.set_plot_config(xa_label='sample groups sequence',
                      ya_label='Force [N]',
                      title='',
                      xlim=[0, 3],
                      ylim=[None, None])
fplot.modify_ticks(['ecr samples', 'series samples'], [1, 2])

fplot.add_label('ecr samples', 'b', line_width=0, marker='o', marker_size=6)
fplot.add_label('serial samples', 'g', line_width=0, marker='o', marker_size=6)

fplot.set_rc_params()
plt.grid()
plt.savefig(
    r'X:/Dnox/Tesla/2017/E1700224-08/data/recording/results/swarm_comparison.png'
)