def test_metric(self):

        a = np.array([1, 2, 3], dtype=np.uint64)
        b = np.array([4, 5, 6], dtype=np.uint64)

        m = evaluate.rand_voi(a, b)

        assert m['rand_split'] == 1.0
        assert m['rand_merge'] == 1.0
        assert m['voi_split'] == 0.0
        assert m['voi_merge'] == 0.0

        a = np.array([1, 1, 2, 2], dtype=np.uint64)
        b = np.array([2, 2, 2, 2], dtype=np.uint64)

        m = evaluate.rand_voi(a, b)

        assert m['rand_split'] == 1.0
        assert m['rand_merge'] == 0.5
        assert m['voi_split'] == 0.0
        assert m['voi_merge'] == 1.0

        m = evaluate.rand_voi(b, a)

        assert m['rand_split'] == 0.5
        assert m['rand_merge'] == 1.0
        assert m['voi_split'] == 1.0
        assert m['voi_merge'] == 0.0

        a = np.array([1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4], dtype=np.uint64)
        b = np.array([3, 3, 3, 3, 4, 5, 6, 6, 5, 5, 5], dtype=np.uint64)

        m = evaluate.rand_voi(a, b)

        self.assertAlmostEqual(m['rand_split'], 0.6363636363636364)
        self.assertAlmostEqual(m['rand_merge'], 0.5675675675675675)
        self.assertAlmostEqual(m['voi_split'], 0.6140806820148608)
        self.assertAlmostEqual(m['voi_merge'], 0.7272727272727271)

        m = evaluate.rand_voi(b, a, return_cluster_scores=True)

        self.assertAlmostEqual(m['rand_split'], 0.5675675675675675)
        self.assertAlmostEqual(m['rand_merge'], 0.6363636363636364)
        self.assertAlmostEqual(m['voi_split'], 0.7272727272727271)
        self.assertAlmostEqual(m['voi_merge'], 0.6140806820148608)

        self.assertAlmostEqual(sum(m['voi_split_i'].values()), m['voi_split'])
        self.assertAlmostEqual(sum(m['voi_merge_j'].values()), m['voi_merge'])
示例#2
0
    def evaluate(self, output_array_identifier, evaluation_array):
        output_array = ZarrArray.open_from_array_identifier(
            output_array_identifier)
        evaluation_data = evaluation_array[evaluation_array.roi].astype(
            np.uint64)
        output_data = output_array[output_array.roi].astype(np.uint64)
        results = rand_voi(evaluation_data, output_data)

        return InstanceEvaluationScores(voi_merge=results["voi_merge"],
                                        voi_split=results["voi_split"])
def evaluate_threshold(
        experiment,
        setup,
        iteration,
        db_host,
        scores_db_name,
        edges_collection,
        segment_ids,
        gt,
        threshold,
        configuration,
        volume_size):

    # open score DB
    client = MongoClient(db_host)
    database = client[scores_db_name]
    score_collection = database['scores']

    # get VOI and RAND
    logging.info("Calculating VOI scores for threshold %f...", threshold)

    logging.info(type(segment_ids))

    rand_voi_report = rand_voi(
        gt,
        segment_ids,
        return_cluster_scores=False)

    metrics = rand_voi_report.copy()

    for k in {'voi_split_i', 'voi_merge_j'}:
        del metrics[k]

    logging.info("Storing VOI values for threshold %f in DB" % threshold)

    metrics['threshold'] = threshold
    metrics['experiment'] = experiment
    metrics['setup'] = setup
    metrics['iteration'] = iteration
    metrics['network'] = configuration
    metrics['volume_size'] = volume_size
    metrics['merge_function'] = edges_collection.strip('edges_')

    logging.info(metrics)

    score_collection.replace_one(
        filter={
            'network': metrics['network'],
            'volume_size': metrics['volume_size'],
            'merge_function': metrics['merge_function'],
            'threshold': metrics['threshold']
        },
        replacement=metrics,
        upsert=True)
示例#4
0
    def compute_rand_voi(self,
                         site_component_ids,
                         site_segment_ids,
                         return_cluster_scores=False):

        logging.info("Computing RAND and VOI...")

        rand_voi_report = rand_voi(np.array([[site_component_ids]]),
                                   np.array([[site_segment_ids]]),
                                   return_cluster_scores=return_cluster_scores)

        logging.info(f"VOI split: {rand_voi_report['voi_split']}")
        logging.info(f"VOI merge: {rand_voi_report['voi_merge']}")

        return rand_voi_report
示例#5
0
def evaluate_threshold(experiment, setup, iteration, db_host, scores_db_name,
                       edges_collection, segment_ids, gt, threshold, method,
                       run_type):

    #open score DB
    client = MongoClient(db_host)
    database = client[scores_db_name]
    score_collection = database['scores']

    #get VOI and RAND
    logging.info(f"Calculating VOI scores for threshold {threshold}...")

    logging.info(type(segment_ids))

    rand_voi_report = rand_voi(gt, segment_ids, return_cluster_scores=False)

    metrics = rand_voi_report.copy()

    for k in {'voi_split_i', 'voi_merge_j'}:
        del metrics[k]

    logging.info(f"Storing VOI values for threshold {threshold} in DB")

    metrics['threshold'] = threshold
    metrics['experiment'] = experiment
    metrics['setup'] = setup
    metrics['iteration'] = iteration
    metrics['merge_function'] = edges_collection.strip('edges_')

    if method is not None:
        metrics['method'] = method

    if run_type is not None:
        metrics['run_type'] = run_type

    logging.info(f"VOI split: {metrics['voi_split']}")
    logging.info(f"VOI merge: {metrics['voi_merge']}")

    logging.info(metrics)

    score_collection.replace_one(filter={
        'method': metrics['method'],
        'run_type': metrics['run_type'],
        'merge_function': metrics['merge_function'],
        'threshold': metrics['threshold']
    },
                                 replacement=metrics,
                                 upsert=True)
示例#6
0
    def test_inputs(self):

        with self.assertRaises(AssertionError):
            a = np.array([1, 2, 3], dtype=np.uint64)
            b = np.array([[4, 5, 6]], dtype=np.uint64)
            evaluate.rand_voi(a, b)

        with self.assertRaises(AssertionError):
            a = np.array([1, 2, 3], dtype=np.uint64)
            b = np.array([4, 5], dtype=np.uint64)
            evaluate.rand_voi(a, b)

        with self.assertRaises(ValueError):
            a = np.array([1, 2, 3], dtype=np.uint32)
            b = np.array([4, 5, 6], dtype=np.uint64)
            evaluate.rand_voi(a, b)
示例#7
0
def evaluate_affs(pred_labels, gt_labels, return_results=False):

    results = rand_voi(gt_labels.data, pred_labels.data)
    results["voi_sum"] = results["voi_split"] + results["voi_merge"]

    scores = {"sample": results, "average": results}

    if return_results:
        results = {
            "pred_labels":
            gp.Array(
                pred_labels.data.astype(np.uint64),
                gp.ArraySpec(roi=pred_labels.spec.roi,
                             voxel_size=pred_labels.spec.voxel_size)),
            "gt_labels":
            gp.Array(
                gt_labels.data.astype(np.uint64),
                gp.ArraySpec(roi=gt_labels.spec.roi,
                             voxel_size=gt_labels.spec.voxel_size)),
        }

        return scores, results

    return scores
示例#8
0
print('compute connected components')
#connected components
gt_comp, gt_num_comp = ndimage.measurements.label(gt_bin)
yhat_comp, yhat_num_comp = ndimage.measurements.label(yhat_bin)
gt_lum_comp, gt_lum_num_comp = ndimage.measurements.label(gt_lum_bin)
yhat_lum_comp, yhat_lum_num_comp = ndimage.measurements.label(yhat_lum_bin)

if (gt_comp.dtype != np.dtype('uint64')):
    gt_comp = gt_comp.astype('uint64')

if (yhat_comp.dtype != np.dtype('uint64')):
    yhat_comp = yhat_comp.astype('uint64')

print('compute vi')
#vi
rand_voi_arrays = rand_voi(gt_comp, yhat_comp, False)
rand_voi_control = rand_voi(gt_comp, gt_comp, False)

print('compute iou over all')
#IOU over all
iou_score = np.sum(np.logical_and(gt_bin, yhat_bin)) / np.sum(
    np.logical_or(gt_bin, yhat_bin)).item()
iou_control = np.sum(np.logical_and(gt_bin, gt_bin)) / np.sum(
    np.logical_or(gt_bin, gt_bin)).item()

print('compute cleft matching')
#cleft matching
#signed distance transformation on gt_bin to create gt_sdt
sdt = ndimage.morphology.distance_transform_edt(gt_bin,sampling=(4,4,4)) -\
        ndimage.morphology.distance_transform_edt(np.logical_not(gt_bin),sampling=(4,4,4))
stdt = np.tanh(sdt / 50.)