示例#1
0
def test_lognormal_distribution(moment):
    num_samples = 100000
    inputs = OrderedDict(batch=bint(10))
    loc = random_tensor(inputs)
    scale = random_tensor(inputs).exp()

    log_measure = dist.LogNormal(loc, scale)(value='x')
    probe = Variable('x', reals())**moment
    with monte_carlo_interpretation(particle=bint(num_samples)):
        with xfail_if_not_implemented():
            actual = Integrate(log_measure, probe, frozenset(['x']))

    samples = backend_dist.LogNormal(loc, scale).sample((num_samples, ))
    expected = (samples**moment).mean(0)
    assert_close(actual.data, expected, atol=1e-2, rtol=1e-2)
示例#2
0
def test_integrate_gaussian(int_inputs, real_inputs):
    int_inputs = OrderedDict(sorted(int_inputs.items()))
    real_inputs = OrderedDict(sorted(real_inputs.items()))
    inputs = int_inputs.copy()
    inputs.update(real_inputs)

    log_measure = random_gaussian(inputs)
    integrand = random_gaussian(inputs)
    reduced_vars = frozenset(real_inputs)

    with monte_carlo_interpretation(particle=bint(10000)):
        approx = Integrate(log_measure, integrand, reduced_vars)
        assert isinstance(approx, Tensor)

    exact = Integrate(log_measure, integrand, reduced_vars)
    assert isinstance(exact, Tensor)
    assert_close(approx, exact, atol=0.1, rtol=0.1)
示例#3
0
def test_reduce_moment_matching_moments():
    x = Variable('x', reals(2))
    gaussian = random_gaussian(
        OrderedDict([('i', bint(2)), ('j', bint(3)), ('x', reals(2))]))
    with interpretation(moment_matching):
        approx = gaussian.reduce(ops.logaddexp, 'j')
    with monte_carlo_interpretation(s=bint(100000)):
        actual = Integrate(approx, Number(1.), 'x')
        expected = Integrate(gaussian, Number(1.), {'j', 'x'})
        assert_close(actual, expected, atol=1e-3, rtol=1e-3)

        actual = Integrate(approx, x, 'x')
        expected = Integrate(gaussian, x, {'j', 'x'})
        assert_close(actual, expected, atol=1e-2, rtol=1e-2)

        actual = Integrate(approx, x * x, 'x')
        expected = Integrate(gaussian, x * x, {'j', 'x'})
        assert_close(actual, expected, atol=1e-2, rtol=1e-2)