def test_deprecated(): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DeprecationWarning) scene = window.Renderer() npt.assert_equal(scene.size(), (0, 0)) npt.assert_equal(len(w), 1) npt.assert_(issubclass(w[-1].category, DeprecationWarning)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DeprecationWarning) scene = window.renderer(background=(0.0, 1.0, 0.0)) npt.assert_equal(scene.size(), (0, 0)) npt.assert_equal(len(w), 1) npt.assert_(issubclass(w[-1].category, DeprecationWarning)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DeprecationWarning) scene = window.ren() npt.assert_equal(scene.size(), (0, 0)) npt.assert_equal(len(w), 2) npt.assert_(issubclass(w[-1].category, DeprecationWarning)) scene = window.Scene() with warnings.catch_warnings(record=True) as l_warn: warnings.simplefilter("always", DeprecationWarning) obj = actor.axes(scale=(1, 1, 1)) window.add(scene, obj) arr = window.snapshot(scene) report = window.analyze_snapshot(arr) npt.assert_equal(report.objects, 3) window.rm(scene, obj) arr = window.snapshot(scene) report = window.analyze_snapshot(arr) npt.assert_equal(report.objects, 0) window.add(scene, obj) window.rm_all(scene) arr = window.snapshot(scene) report = window.analyze_snapshot(arr) npt.assert_equal(report.objects, 0) window.add(scene, obj) window.clear(scene) report = window.analyze_renderer(scene) npt.assert_equal(report.actors, 0) deprecated_warns = [ w for w in l_warn if issubclass(w.category, DeprecationWarning) ] npt.assert_equal(len(deprecated_warns), 7) npt.assert_(issubclass(l_warn[-1].category, DeprecationWarning))
def test_contour_from_roi(): # Render volume renderer = window.renderer() data = np.zeros((50, 50, 50)) data[20:30, 25, 25] = 1. data[25, 20:30, 25] = 1. affine = np.eye(4) surface = actor.contour_from_roi(data, affine, color=np.array([1, 0, 1]), opacity=.5) renderer.add(surface) renderer.reset_camera() renderer.reset_clipping_range() # window.show(renderer) # Test binarization renderer2 = window.renderer() data2 = np.zeros((50, 50, 50)) data2[20:30, 25, 25] = 1. data2[35:40, 25, 25] = 1. affine = np.eye(4) surface2 = actor.contour_from_roi(data2, affine, color=np.array([0, 1, 1]), opacity=.5) renderer2.add(surface2) renderer2.reset_camera() renderer2.reset_clipping_range() # window.show(renderer2) arr = window.snapshot(renderer, 'test_surface.png', offscreen=True) arr2 = window.snapshot(renderer2, 'test_surface2.png', offscreen=True) report = window.analyze_snapshot(arr, find_objects=True) report2 = window.analyze_snapshot(arr2, find_objects=True) npt.assert_equal(report.objects, 1) npt.assert_equal(report2.objects, 2) # test on real streamlines using tracking example from dipy.data import read_stanford_labels from dipy.reconst.shm import CsaOdfModel from dipy.data import default_sphere from dipy.direction import peaks_from_model from dipy.tracking.local import ThresholdTissueClassifier from dipy.tracking import utils from dipy.tracking.local import LocalTracking from fury.colormap import line_colors hardi_img, gtab, labels_img = read_stanford_labels() data = hardi_img.get_data() labels = labels_img.get_data() affine = hardi_img.affine white_matter = (labels == 1) | (labels == 2) csa_model = CsaOdfModel(gtab, sh_order=6) csa_peaks = peaks_from_model(csa_model, data, default_sphere, relative_peak_threshold=.8, min_separation_angle=45, mask=white_matter) classifier = ThresholdTissueClassifier(csa_peaks.gfa, .25) seed_mask = labels == 2 seeds = utils.seeds_from_mask(seed_mask, density=[1, 1, 1], affine=affine) # Initialization of LocalTracking. # The computation happens in the next step. streamlines = LocalTracking(csa_peaks, classifier, seeds, affine, step_size=2) # Compute streamlines and store as a list. streamlines = list(streamlines) # Prepare the display objects. streamlines_actor = actor.line(streamlines, line_colors(streamlines)) seedroi_actor = actor.contour_from_roi(seed_mask, affine, [0, 1, 1], 0.5) # Create the 3d display. r = window.ren() r2 = window.ren() r.add(streamlines_actor) arr3 = window.snapshot(r, 'test_surface3.png', offscreen=True) report3 = window.analyze_snapshot(arr3, find_objects=True) r2.add(streamlines_actor) r2.add(seedroi_actor) arr4 = window.snapshot(r2, 'test_surface4.png', offscreen=True) report4 = window.analyze_snapshot(arr4, find_objects=True) # assert that the seed ROI rendering is not far # away from the streamlines (affine error) npt.assert_equal(report3.objects, report4.objects)
def screenshot_fa_peaks(fa, peaks, directory='.'): """ Compute 3 view screenshot with peaks on FA. Parameters ---------- fa : string FA filename. peaks : string Peak filename. directory : string Directory to save the mosaic. Returns ------- name : string Path of the mosaic """ slice_name = ['sagittal', 'coronal', 'axial'] data = nib.load(fa).get_data() evecs_data = nib.load(peaks).get_data() evecs = np.zeros(data.shape + (1, 3)) evecs[:, :, :, 0, :] = evecs_data[...] middle = [data.shape[0] // 2 + 4, data.shape[1] // 2, data.shape[2] // 2] slice_display = [(middle[0], None, None), (None, middle[1], None), (None, None, middle[2])] concat = [] for j, slice_name in enumerate(slice_name): image_name = os.path.basename(str(peaks)).split(".")[0] name = os.path.join(directory, image_name + '.png') slice_actor = actor.slicer(data, interpolation='nearest', opacity=0.3) peak_actor = actor.peak_slicer(evecs, colors=None) peak_actor.GetProperty().SetLineWidth(2.5) slice_actor.display(slice_display[j][0], slice_display[j][1], slice_display[j][2]) peak_actor.display(slice_display[j][0], slice_display[j][1], slice_display[j][2]) renderer = window.ren() renderer.add(slice_actor) renderer.add(peak_actor) center = slice_actor.GetCenter() pos = None viewup = None if slice_name == "sagittal": pos = (center[0] - 350, center[1], center[2]) viewup = (0, 0, -1) elif slice_name == "coronal": pos = (center[0], center[1] + 350, center[2]) viewup = (0, 0, -1) elif slice_name == "axial": pos = (center[0], center[1], center[2] + 350) viewup = (0, -1, 1) camera = renderer.GetActiveCamera() camera.SetViewUp(viewup) camera.SetPosition(pos) camera.SetFocalPoint(center) img = renderer_to_arr(renderer, (1080, 1080)) if len(concat) == 0: concat = img else: concat = np.hstack((concat, img)) imgs_comb = Image.fromarray(concat) imgs_comb.save(name) return name