def __init__(self, params, yaw = Fuzzy(mf_types, f_ssets)): '''Initialize some variables''' Controller.__init__(self,params) self.heading_angle = 0 self.yaw = yaw
from rupiah import Rupiah from fuzzy import Fuzzy masaKerja = int(input("Masukkan lama masa kerja (tahun): ")) produkTerjual = int(input("Masukkan banyak barang terjual (unit): ")) fuzz = Fuzzy(masaKerja, produkTerjual) bonus = Rupiah(fuzz.hitungBonus()) nilai_z = Rupiah(fuzz.nilai_z) print("> Masa Kerja:", "{} Tahun".format(masaKerja), "| {}".format(fuzz.displayMasaKerja())) print("> Produk Terjual:", "{} Unit".format(produkTerjual), "| {}".format(fuzz.displayProdukTerjual())) print("> Bonus Penjualan:", fuzz.displayBonus()) print("----------------------------------") print(">> Total Bonus: {}".format(bonus.konversi()), "<<") print("----------------------------------")
from fuzzy import Fuzzy a = Fuzzy(0.7) b = Fuzzy(0.4) if not a: print('ERROR : in line 7 a should be true') if b: print('ERROR : in line 10 b should be false') Fuzzy.set_truth_threshold(3) if Fuzzy.TRUTH_TRESHOLD > 1.0: print('ERROR : thrut treshold set above 1') Fuzzy.set_truth_threshold(0.3) if not b: print('ERROR : in line 10 b should be true') c = Fuzzy(23) if c > 1.0: print('ERROR : thrut value set above 1') if -a != 0.3: print('ERROR: negation is incorrect ({})'.format(-a)) if (a | b) != 0.7: print('ERROR: alternative is incorrect ({})'.format(a | b)) if a & b != 0.4: print('ERROR: conjunction is incorrect ({})'.format(a & b))
def initialize(self, article): similarity_array = [] # similarity_array.append(article) test = self.articleSummerization(article, 1) # in one line # for i in summerizedSentence: # test=str(i) print('-------Summerized Title-------') print(test) sitesContainingArticle, scrapId = self.googleSearch(article) print('sites_length_after_google search', len(sitesContainingArticle)) for index, url in enumerate(sitesContainingArticle): print('URL ', url, scrapId[index], '\n') raw_html = self.simple_get(url) #full page site content try: soup = BeautifulSoup( raw_html, 'html.parser') #proper formattinh raw_html # print('hua idhar') # print(soup) except Exception as e: print(e) return 0, [] _ = [s.extract() for s in soup('script')] soup_article = soup.find_all('div', {"class": scrapId[index]}) # print(soup_article) article_string = '' for data in soup_article: # print(data) article_string += data.text # article_string += data.text # print(article_string) if not article_string == '': # print('aaya\n') similarity_array.append( self.articleSummerization(article_string, 5)) else: print('nahi aaya\n') pass # for c in similarity_array: # print('\n\n\n',c) mylsa = LSA() wmdinit = WordMoverDistance() length = len(similarity_array) # print(length) if length == 0: return 0, sitesContainingArticle else: count = 0 score_array = [] while (count < length): print('\n\n', similarity_array[count]) lsa_similarity = mylsa.start([article + ' ' + article] + similarity_array, count + 1) wmdinit.data_accept(similarity_array[count], article) wmddistance = wmdinit.model() print('wordmover distance is', wmddistance) fuzzy = Fuzzy(lsa_similarity, wmddistance) score = fuzzy.get_score_data() # score = score/10 print('final score ', score) score_array.append(score) count = count + 1 score_array = sorted(score_array, key=lambda x: x, reverse=True) return min(100, np.around(sum(score_array[:2]), decimals=2) * 100), sitesContainingArticle # wmdinit=wordmover.WordMoverDistance(titles[count],titles[0]) # wmddistance=wmdinit.model()