示例#1
0
 def setUp(self):
     # model a -> b
     bn = {}
     self.arr = []
     bn[0] = BN(domain=Domain(),
                new_domain_variables={
                    'a': [0, 1],
                    'b': [0, 1]
                })
     bn[0].add_cpts([
         CPT(Factor(variables=['a'], data=[0.5, 0.5]), child='a'),
         CPT(Factor(variables=['a', 'b'], data=[0.3, 0.7, 0.4, 0.6]),
             child='b')
     ])
     self.arr.append([('a', 'b')])
     bn[1] = BN(domain=Domain(),
                new_domain_variables={
                    'a': [0, 1],
                    'b': [0, 1],
                    'c': [0, 1]
                })
     bn[1].add_cpts([
         CPT(Factor(variables=['a'], data=[0.5, 0.5]), child='a'),
         CPT(Factor(variables=['a', 'b'], data=[0.3, 0.7, 0.4, 0.6]),
             child='b'),
         CPT(Factor(variables=['c', 'b'], data=[0.1, 0.9, 0.2, 0.8]),
             child='c')
     ])
     self.arr.append([('a', 'b'), ('b', 'c')])
     self.cbn = [CBN.from_bn(bn[i]) for i in bn.keys()]
示例#2
0
    def runTest(self):
        num_vars = 5
        num_vals = 10
        for x in xrange(num_runs):
            vs = dict([('V'+str(i),range(num_vals)) for i in xrange(num_vars)])
            # should get some random data with 0.
            f = Factor(variables = vs.keys()
                    ,data = [abs(randint(0,20)) for i in xrange(num_vals**num_vars)]
                    #,data = [5, 0, 1, 2]
                    #,data = [13,0,0,20]
                    #,data = [14,15,20,16]
                    ,domain = Domain()
                    ,new_domain_variables=vs
                    ,check = True)
            records = []
            for inst in f.insts():
                records.append(inst + (f[inst],))
            rawdata = (vs.keys(), vs, vs.keys(), records)
            #print records

            cf = IncrementalCompactFactor(rawdata, rmin=0)
            #print 'old tree:'
            #print cf

#            g = Factor(variables = vs.keys()
#                    #,data = [13,2,0,0]
#                    ,data = [14,15,0,0]
#                    ,domain = Domain()
#                    ,new_domain_variables=vs
#                    ,check = True)
            g = f.copy(copy_domain=True)
            def swap_some(x):
                r = random()
                if x == 0:
                    if r <= 0.5:
                        return randint(1,5)
                    return 0
                elif r <= 0.5:
                    return 0
                return x
            def invert_some(x):
                return 5-x
            g.map(swap_some)
            #print g
            f += g
            records = []
            for inst in g.insts():
                records.append(inst + (g[inst],))
            rawdata = (vs.keys(), vs, vs.keys(), records)
            cf.update(rawdata)
            #print 'new tree:'
            #print cf

            for variables in powerset(vs.keys()):
                g = f.copy(copy_domain=True)
                g.marginalise_away(g.variables() - frozenset(variables))
                self.assert_(same_factor(g,cf.makeFactor(variables),verbose=True))
示例#3
0
def distribution_of(model):
    """Returns a normalised factor representing the joint instantiation
    of the model.
    """

    dist = Factor(data=[1], domain=model)
    for f in model.factors():
        dist *= f
    dist.broadcast(frozenset(model.variables()))
    dist /= dist.z()
    return dist
示例#4
0
def distribution_of(model):
    """Returns a normalised factor representing the joint instantiation
    of the model.
    """

    dist = Factor(data=[1],domain=model)
    for f in model.factors():
        dist *= f
    dist.broadcast(frozenset(model.variables()))
    dist /= dist.z()
    return dist
示例#5
0
def _main():
    # values for all variables
    vals = 0, 1
    cpts = []
    for i in range(1, 9):
        # construct variable names
        vu = 'U' + str(i)
        vr = 'R' + str(i)
        vx = 'X' + str(2 * i - 1), 'X' + str(2 * i)
        vy = 'Y' + str(2 * i - 1), 'Y' + str(2 * i)

        # create input Ui CPT
        cpts.append(
            CPT(Factor([vu], [0.5, 0.5], new_domain_variables={vu: vals}), vu))

        # Create CPTs for R and two X variables with dummy data
        if i == 1:
            r_parents = [vr, vu]
        else:
            r_parents = [vr, vu, 'R' + str(i - 1)]
        tmp_cpts = []
        tmp_cpts.append(
            CPT(Factor(r_parents, new_domain_variables={vr: vals}), vr))
        tmp_cpts.append(
            CPT(Factor([vu, vx[0]], new_domain_variables={vx[0]: vals}),
                vx[0]))
        tmp_cpts.append(
            CPT(Factor([vu, vr, vx[1]], new_domain_variables={vx[1]: vals}),
                vx[1]))

        # put in correct data for R and two X variables
        for cpt in tmp_cpts:
            data_it = cpt.parent_insts_indices()
            for pi in cpt.parent_insts():
                out = sum(pi) % 2
                data_indices = data_it.next()
                if out == 0:
                    cpt._data[data_indices[0]] = 1.0
                    cpt._data[data_indices[1]] = 0.0
                else:
                    cpt._data[data_indices[0]] = 0.0
                    cpt._data[data_indices[1]] = 1.0
        cpts.extend(tmp_cpts)
        for j, y in enumerate(vy):
            cpts.append(
                CPT(
                    Factor([vx[j], y], [0.6, 0.4, 0.4, 0.6],
                           new_domain_variables={y: vals}), y))
    return BNM(cpts)
示例#6
0
def rand_factor(vs):
    n = reduce(operator.mul, [len(vs[v]) for v in vs])
    f = Factor(variables=vs.keys(),
               data=rand_factor_data(n),
               domain=Domain(),
               check=True,
               new_domain_variables=vs)
    return f
示例#7
0
def log_model(p):
    """Find log P(I) for a factored distribution"""
    log_p = Factor(data=[0],domain=p)
    for p_fact in p:
        p_fact = p_fact.copy()
        p_fact.map(rlog)
        log_p += p_fact
    return log_p
示例#8
0
    def runTest(self):
        num_vars = 5
        num_vals = 10
        for i in xrange(num_runs):
            vs = dict([('V'+str(i),range(num_vals)) for i in xrange(num_vars)])
            # should get some random data with 0.
            f = Factor(variables = vs.keys()
                    ,data = [abs(randint(0,5)) for i in xrange(num_vals**num_vars)]
                    ,domain = Domain()
                    ,new_domain_variables=vs
                    ,check = True)
            records = []
            for inst in f.insts():
                records.append(inst + (f[inst],))
            rawdata = (vs.keys(), vs, vs.keys(), records)

            cf = IncrementalCompactFactor(rawdata)
            for variables in powerset(vs.keys()):
                g = f.copy(copy_domain=True)
                g.marginalise_away(g.variables() - frozenset(variables))
                self.assert_(same_factor(g,cf.makeFactor(variables),verbose=True))
示例#9
0
def rand_bn(vs, max_potential_parents=15):
    model = BN(domain=Domain(), new_domain_variables=vs)

    for child in vs.keys():
        parents = list(model.variables())
        too_many = len(parents) - max_potential_parents
        if too_many > 0:
            for i in xrange(too_many):
                parents.remove(choice(parents))

        fv = rand_subset(parents) | set([child])
        n = reduce(operator.mul, [len(vs[v]) for v in fv])
        f = Factor(variables=fv,
                   data=rand_factor_data(n),
                   domain=model,
                   check=True)
        cpt = CPT(f, child, True, True)
        model *= cpt
    return model
示例#10
0
    def tryModel(self, model):
        self.assertAlmostEquals(dkl(model,model),0)
        cbn = CBN.from_bn(model.copy(copy_domain=True))
        v = choice(tuple(cbn.variables()))
        f = cbn[v]
        dat = rand_factor_data(len(f.data()))
        change_one = None
        for i,(a,b) in enumerate(zip(f.data(),dat)):
            if round(a-b,4) == 0:
                dat[i] += 10.0
                break

        cbn._replace_factor( v
                          , CPT(Factor(variables=f.variables()
                               ,data=dat
                               ,domain=cbn), v, cpt_force=True))
        kl = dkl(model,cbn)
        self.assert_(kl > 0)
        kl_ = dkl(cbn,model)
        self.assert_(kl_ > 0)
示例#11
0
def generate_dense_bn(density, num_vars=8, num_vals=3):
    if density > num_vars:
        raise RuntimeError, 'density must be less than number of variables'

    vars, parents = generate_dense_parents(density, num_vars)
    vals = dict([(var, frozenset([i for i in xrange(num_vals)]))
                 for var in vars])
    bn = BN(domain=Domain(), new_domain_variables=vals)
    for child in vars:
        if child in parents:
            n = num_vals**(len(parents[child]) + 1)
        else:
            n = num_vals
            parents[child] = frozenset()

        f = Factor(variables=frozenset([child]) | parents[child],
                   data=rand_factor_data(n),
                   domain=bn,
                   check=True)
        bn *= CPT(f, child, True, True)
    return bn
示例#12
0
def rand_fr(vs, min_fact=1, max_fact=10, min_fact_vars=1, max_fact_vars=10):
    model = FR(domain=Domain(), new_domain_variables=vs)

    for i in xrange(randrange(min_fact, max_fact)):
        fv = []
        while len(fv) == 0:
            for j in xrange(
                    randrange(min_fact_vars, min(max_fact_vars,
                                                 len(vs.keys())))):
                v = choice(vs.keys())
                while v in fv:
                    v = choice(vs.keys())
                fv.append(v)
            fv = tuple(fv)

        n = reduce(operator.mul, [len(vs[v]) for v in fv])
        f = Factor(variables=fv,
                   data=rand_factor_data(n),
                   domain=model,
                   check=True)
        model *= f
    return model
示例#13
0
    def tryModel(self, model):
        kl = dkl(model,model)
        self.assert_(is_finite(kl))

        cbn = CBN.from_bn(model.copy(copy_domain=True))
        v = choice(tuple(cbn.variables()))
        f = cbn[v]
        dat = rand_factor_data(len(f.data()))
        change_one = None
        for i,(a,b) in enumerate(zip(f.data(),dat)):
            if round(a-b,4) == 0:
                dat[i] += uniform(1.0,100.0)

        cbn._replace_factor( v
                          , CPT(Factor(variables=f.variables()
                               ,data=dat
                               ,domain=cbn), v, cpt_force=True))
        ikl = dkl(model,cbn)
        self.assert_(is_finite(ikl))
        self.assert_(ikl >= kl)
        kl = dkl(cbn,cbn)
        self.assert_(is_finite(kl))
        ikl_ = dkl(cbn,model)
        self.assert_(ikl_ >= kl)
示例#14
0
from gPy.Examples import minibn, asia
from gPy.Models import FR, BN
from gPy.Parameters import Factor, CPT
from gPy.Variables import Domain
from random import choice, randrange, uniform, shuffle
import operator, unittest, pickle

xor = BN(domain=Domain(),
         new_domain_variables={
             'a': [0, 1],
             'b': [0, 1],
             'c': [0, 1]
         })
xor.add_cpts([
    CPT(Factor(variables=['a'], data=[0.5, 0.5]), child='a'),
    CPT(Factor(variables=['b'], data=[0.5, 0.5]), child='b'),
    CPT(Factor(variables=['c', 'a', 'b'],
               data=[1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0]),
        child='c')
])
cbn_small_names = ['xor', 'minibn', 'asia']
cbn_small_test_cases = [xor, minibn, asia]
cbn_large_names = ['alarm', 'insurance', 'carpo']
try:
    # load the pickled large Bayes nets.
    cbn_large_test_cases = map(
        lambda fn: pickle.load(open('networks/' + fn + '_bn.pck', 'r')),
        cbn_large_names)
except:
    cbn_large_names = []
    cbn_large_test_cases = []
示例#15
0
def disp(fn, samples):
    f = open(fn, 'w')
    fact = samples.makeFactor(samples.variables())
    for var in fact.variables():
        print >> f, var,
    print >> f, 'count'
    for inst in fact.insts():
        for i in inst:
            print >> f, i,
        print >> f, fact[inst]
    f.close()


bn0 = BN(domain=Domain(), new_domain_variables={'a': [0, 1], 'b': [0, 1]})
bn0.add_cpts([
    CPT(Factor(variables=['a'], data=[0.5, 0.5]), child='a'),
    CPT(Factor(variables=['a', 'b'], data=[0.3, 0.7, 0.4, 0.6]), child='b')
])
w = CausalWorld(bn0)
samples = w.observe(10000)
disp('two_depend', samples)

bn1 = BN(domain=Domain(), new_domain_variables={'a': [0, 1], 'b': [0, 1]})
bn1.add_cpts([
    CPT(Factor(variables=['a'], data=[0.5, 0.5]), child='a'),
    CPT(Factor(variables=['b'], data=[0.3, 0.7]), child='b')
])
w = CausalWorld(bn1)
samples = w.observe(10000)
disp('two_independ', samples)
示例#16
0
文件: agm3.py 项目: EJHortala/books-2
binvals = (0, 1)

from gPy.Variables import declare_variable
from gPy.Parameters import Factor
from gibbs import gibbs_sample
from gPy.Models import FR

for i in range(10):
    for j in range(10):
        declare_variable((i, j), binvals)

x = 1
y = 5
data = [
    x,  # 0,0
    y,  # 0,1
    y,  # 1,0
    x  # 1,1
]

factors = []
for i in range(10):
    for j in range(10):
        factors.append(Factor(((i, j), ((i + 1) % 10, j)), data))
        factors.append(Factor(((i, j), (i, (j + 1) % 10)), data))

fr = FR(factors)
sample = gibbs_sample(fr, 100, 0)
cPickle.dump(sample, open(sys.argv[1], 'w'))