def __init__(self, localId, referenceSet, randomSeed=0, numVariantSets=1, numCalls=1, variantDensity=0.5, numReadGroupSets=1, numReadGroupsPerReadGroupSet=1, numAlignments=1, numFeatureSets=1): super(SimulatedDataset, self).__init__(localId) self._description = "Simulated dataset {}".format(localId) # TODO create a simulated Ontology # Variants for i in range(numVariantSets): localId = "simVs{}".format(i) seed = randomSeed + i variantSet = variants.SimulatedVariantSet(self, referenceSet, localId, seed, numCalls, variantDensity) callSets = variantSet.getCallSets() # Add biosamples for callSet in callSets: bioSample = biodata.BioSample(self, callSet.getLocalId()) bioSample2 = biodata.BioSample(self, callSet.getLocalId() + "2") individual = biodata.Individual(self, callSet.getLocalId()) bioSample.setIndividualId(individual.getId()) bioSample2.setIndividualId(individual.getId()) self.addIndividual(individual) self.addBioSample(bioSample) self.addBioSample(bioSample2) self.addVariantSet(variantSet) variantAnnotationSet = variants.SimulatedVariantAnnotationSet( variantSet, "simVas{}".format(i), seed) variantSet.addVariantAnnotationSet(variantAnnotationSet) # Reads for i in range(numReadGroupSets): localId = 'simRgs{}'.format(i) seed = randomSeed + i readGroupSet = reads.SimulatedReadGroupSet( self, localId, referenceSet, seed, numReadGroupsPerReadGroupSet, numAlignments) for rg in readGroupSet.getReadGroups(): bioSample = biodata.BioSample(self, rg.getLocalId()) individual = biodata.Individual(self, rg.getLocalId()) bioSample.setIndividualId(individual.getId()) rg.setBioSampleId(bioSample.getId()) self.addIndividual(individual) self.addBioSample(bioSample) self.addReadGroupSet(readGroupSet) # Features for i in range(numFeatureSets): localId = "simFs{}".format(i) seed = randomSeed + i featureSet = sequenceAnnotations.SimulatedFeatureSet( self, localId, seed) featureSet.setReferenceSet(referenceSet) self.addFeatureSet(featureSet)
def addBioSample(self): """ Adds a new biosample into this repo """ self._openRepo() dataset = self._repo.getDatasetByName(self._args.datasetName) bioSample = bio_metadata.BioSample( dataset, self._args.bioSampleName) bioSample.populateFromJson(self._args.bioSample) self._updateRepo(self._repo.insertBioSample, bioSample)
def _readBioSampleTable(self, cursor): cursor.row_factory = sqlite3.Row cursor.execute("SELECT * FROM BioSample;") for row in cursor: dataset = self.getDataset(row[b'datasetId']) bioSample = biodata.BioSample( dataset, row[b'name']) bioSample.populateFromRow(row) assert bioSample.getId() == row[b'id'] dataset.addBioSample(bioSample)
def testToProtocolElement(self): dataset = datasets.Dataset('dataset1') # Write out a valid input validBioSample = protocol.BioSample(name="test", created="2016-05-19T21:00:19Z", updated="2016-05-19T21:00:19Z") validBioSample.info['test'].values.add().string_value = 'test-info' # pass through protocol creation bioSample = bioMetadata.BioSample(dataset, "test") bioSample.populateFromJson(protocol.toJson(validBioSample)) gaBioSample = bioSample.toProtocolElement() # Verify elements exist self.assertEqual(gaBioSample.created, validBioSample.created) self.assertEqual(gaBioSample.updated, validBioSample.updated) # Invalid input invalidBioSample = '{"bad:", "json"}' bioSample = bioMetadata.Individual(dataset, "test") # Should fail self.assertRaises(exceptions.InvalidJsonException, bioSample.populateFromJson, invalidBioSample)
def run(self): if not os.path.exists(self.outputDirectory): os.makedirs(self.outputDirectory) self.repo.open("w") self.repo.initialise() referenceFileName = "ref_brca1.fa" inputRef = os.path.join( self.inputDirectory, referenceFileName) outputRef = os.path.join( self.outputDirectory, referenceFileName) shutil.copy(inputRef, outputRef) fastaFilePath = os.path.join( self.outputDirectory, referenceFileName + '.gz') pysam.tabix_compress( outputRef, fastaFilePath) with open( os.path.join( self.inputDirectory, "ref_brca1.json")) as refMetadataFile: refMetadata = json.load(refMetadataFile) with open( os.path.join( self.inputDirectory, "referenceset_hg37.json")) as refMetadataFile: refSetMetadata = json.load(refMetadataFile) referenceSet = references.HtslibReferenceSet( refSetMetadata['assemblyId']) referenceSet.populateFromFile(fastaFilePath) referenceSet.setAssemblyId(refSetMetadata['assemblyId']) referenceSet.setDescription(refSetMetadata['description']) referenceSet.setNcbiTaxonId(refSetMetadata['ncbiTaxonId']) referenceSet.setIsDerived(refSetMetadata['isDerived']) referenceSet.setSourceUri(refSetMetadata['sourceUri']) referenceSet.setSourceAccessions(refSetMetadata['sourceAccessions']) for reference in referenceSet.getReferences(): reference.setNcbiTaxonId(refMetadata['ncbiTaxonId']) reference.setSourceAccessions( refMetadata['sourceAccessions']) self.repo.insertReferenceSet(referenceSet) dataset = datasets.Dataset("brca1") self.repo.insertDataset(dataset) hg00096Individual = biodata.Individual(dataset, "HG00096") with open( os.path.join( self.inputDirectory, "individual_HG00096.json")) as jsonString: hg00096Individual.populateFromJson(jsonString.read()) self.repo.insertIndividual(hg00096Individual) hg00096BioSample = biodata.BioSample(dataset, "HG00096") with open( os.path.join( self.inputDirectory, "bioSample_HG00096.json")) as jsonString: hg00096BioSample.populateFromJson(jsonString.read()) hg00096BioSample.setIndividualId(hg00096Individual.getId()) self.repo.insertBioSample(hg00096BioSample) hg00099Individual = biodata.Individual(dataset, "HG00099") with open( os.path.join( self.inputDirectory, "individual_HG00099.json")) as jsonString: hg00099Individual.populateFromJson(jsonString.read()) self.repo.insertIndividual(hg00099Individual) hg00099BioSample = biodata.BioSample(dataset, "HG00099") with open( os.path.join( self.inputDirectory, "bioSample_HG00099.json")) as jsonString: hg00099BioSample.populateFromJson(jsonString.read()) hg00099BioSample.setIndividualId(hg00099Individual.getId()) self.repo.insertBioSample(hg00099BioSample) hg00101Individual = biodata.Individual(dataset, "HG00101") with open( os.path.join( self.inputDirectory, "individual_HG00101.json")) as jsonString: hg00101Individual.populateFromJson(jsonString.read()) self.repo.insertIndividual(hg00101Individual) hg00101BioSample = biodata.BioSample(dataset, "HG00101") with open( os.path.join( self.inputDirectory, "bioSample_HG00101.json")) as jsonString: hg00101BioSample.populateFromJson(jsonString.read()) hg00101BioSample.setIndividualId(hg00101Individual.getId()) self.repo.insertBioSample(hg00101BioSample) readFiles = [ "brca1_HG00096.sam", "brca1_HG00099.sam", "brca1_HG00101.sam"] for readFile in readFiles: name = readFile.split('_')[1].split('.')[0] readSrc = pysam.AlignmentFile( os.path.join(self.inputDirectory, readFile), "r") readDest = pysam.AlignmentFile( os.path.join( self.outputDirectory, name + ".bam"), "wb", header=readSrc.header) destFilePath = readDest.filename for readData in readSrc: readDest.write(readData) readDest.close() readSrc.close() pysam.index(destFilePath) readGroupSet = reads.HtslibReadGroupSet(dataset, name) readGroupSet.populateFromFile(destFilePath, destFilePath + ".bai") readGroupSet.setReferenceSet(referenceSet) bioSamples = [hg00096BioSample, hg00099BioSample, hg00101BioSample] for readGroup in readGroupSet.getReadGroups(): for bioSample in bioSamples: if bioSample.getLocalId() == readGroup.getSampleName(): readGroup.setBioSampleId(bioSample.getId()) self.repo.insertReadGroupSet(readGroupSet) ontologyMapFileName = "so-xp-simple.obo" inputOntologyMap = os.path.join( self.inputDirectory, ontologyMapFileName) outputOntologyMap = os.path.join( self.outputDirectory, ontologyMapFileName) shutil.copy(inputOntologyMap, outputOntologyMap) sequenceOntology = ontologies.Ontology("so-xp-simple") sequenceOntology.populateFromFile(outputOntologyMap) sequenceOntology._id = "so-xp-simple" self.repo.insertOntology(sequenceOntology) self.repo.addOntology(sequenceOntology) vcfFiles = [ "brca1_1kgPhase3_variants.vcf", "brca1_WASH7P_annotation.vcf", "brca1_OR4F_annotation.vcf"] for vcfFile in vcfFiles: self.addVariantSet( vcfFile, dataset, referenceSet, sequenceOntology, bioSamples) seqAnnFile = "brca1_gencodev19.gff3" seqAnnSrc = os.path.join(self.inputDirectory, seqAnnFile) seqAnnDest = os.path.join(self.outputDirectory, "gencodev19.db") dbgen = generate_gff3_db.Gff32Db(seqAnnSrc, seqAnnDest) dbgen.run() gencode = sequenceAnnotations.Gff3DbFeatureSet(dataset, "gencodev19") gencode.setOntology(sequenceOntology) gencode.populateFromFile(seqAnnDest) gencode.setReferenceSet(referenceSet) self.repo.insertFeatureSet(gencode) self.repo.commit() print("Done converting compliance data.", file=sys.stderr)
def run(self): if not os.path.exists(self.outputDirectory): os.makedirs(self.outputDirectory) self.repo.open("w") self.repo.initialise() referenceFileName = "ref_brca1.fa" inputRef = os.path.join(self.inputDirectory, referenceFileName) outputRef = os.path.join(self.outputDirectory, referenceFileName) shutil.copy(inputRef, outputRef) fastaFilePath = os.path.join(self.outputDirectory, referenceFileName + '.gz') pysam.tabix_compress(outputRef, fastaFilePath) with open(os.path.join(self.inputDirectory, "ref_brca1.json")) as refMetadataFile: refMetadata = json.load(refMetadataFile) with open(os.path.join(self.inputDirectory, "referenceset_hg37.json")) as refMetadataFile: refSetMetadata = json.load(refMetadataFile) referenceSet = references.HtslibReferenceSet( refSetMetadata['assemblyId']) referenceSet.populateFromFile(fastaFilePath) referenceSet.setAssemblyId(refSetMetadata['assemblyId']) referenceSet.setDescription(refSetMetadata['description']) referenceSet.setNcbiTaxonId(refSetMetadata['ncbiTaxonId']) referenceSet.setIsDerived(refSetMetadata['isDerived']) referenceSet.setSourceUri(refSetMetadata['sourceUri']) referenceSet.setSourceAccessions(refSetMetadata['sourceAccessions']) for reference in referenceSet.getReferences(): reference.setNcbiTaxonId(refMetadata['ncbiTaxonId']) reference.setSourceAccessions(refMetadata['sourceAccessions']) self.repo.insertReferenceSet(referenceSet) dataset = datasets.Dataset("brca1") # Some info is set, it isn't important what dataset.setInfo({"version": ga4gh.__version__}) self.repo.insertDataset(dataset) hg00096Individual = biodata.Individual(dataset, "HG00096") with open(os.path.join(self.inputDirectory, "individual_HG00096.json")) as jsonString: hg00096Individual.populateFromJson(jsonString.read()) self.repo.insertIndividual(hg00096Individual) hg00096BioSample = biodata.BioSample(dataset, "HG00096") with open(os.path.join(self.inputDirectory, "bioSample_HG00096.json")) as jsonString: hg00096BioSample.populateFromJson(jsonString.read()) hg00096BioSample.setIndividualId(hg00096Individual.getId()) self.repo.insertBioSample(hg00096BioSample) hg00099Individual = biodata.Individual(dataset, "HG00099") with open(os.path.join(self.inputDirectory, "individual_HG00099.json")) as jsonString: hg00099Individual.populateFromJson(jsonString.read()) self.repo.insertIndividual(hg00099Individual) hg00099BioSample = biodata.BioSample(dataset, "HG00099") with open(os.path.join(self.inputDirectory, "bioSample_HG00099.json")) as jsonString: hg00099BioSample.populateFromJson(jsonString.read()) hg00099BioSample.setIndividualId(hg00099Individual.getId()) self.repo.insertBioSample(hg00099BioSample) hg00101Individual = biodata.Individual(dataset, "HG00101") with open(os.path.join(self.inputDirectory, "individual_HG00101.json")) as jsonString: hg00101Individual.populateFromJson(jsonString.read()) self.repo.insertIndividual(hg00101Individual) hg00101BioSample = biodata.BioSample(dataset, "HG00101") with open(os.path.join(self.inputDirectory, "bioSample_HG00101.json")) as jsonString: hg00101BioSample.populateFromJson(jsonString.read()) hg00101BioSample.setIndividualId(hg00101Individual.getId()) self.repo.insertBioSample(hg00101BioSample) readFiles = [ "brca1_HG00096.sam", "brca1_HG00099.sam", "brca1_HG00101.sam" ] for readFile in readFiles: name = readFile.split('_')[1].split('.')[0] readSrc = pysam.AlignmentFile( os.path.join(self.inputDirectory, readFile), "r") readDest = pysam.AlignmentFile(os.path.join( self.outputDirectory, name + ".bam"), "wb", header=readSrc.header) destFilePath = readDest.filename for readData in readSrc: readDest.write(readData) readDest.close() readSrc.close() pysam.index(destFilePath) readGroupSet = reads.HtslibReadGroupSet(dataset, name) readGroupSet.populateFromFile(destFilePath, destFilePath + ".bai") readGroupSet.setReferenceSet(referenceSet) dataset.addReadGroupSet(readGroupSet) bioSamples = [hg00096BioSample, hg00099BioSample, hg00101BioSample] for readGroup in readGroupSet.getReadGroups(): for bioSample in bioSamples: if bioSample.getLocalId() == readGroup.getSampleName(): readGroup.setBioSampleId(bioSample.getId()) self.repo.insertReadGroupSet(readGroupSet) ontologyMapFileName = "so-xp-simple.obo" inputOntologyMap = os.path.join(self.inputDirectory, ontologyMapFileName) outputOntologyMap = os.path.join(self.outputDirectory, ontologyMapFileName) shutil.copy(inputOntologyMap, outputOntologyMap) sequenceOntology = ontologies.Ontology("so-xp-simple") sequenceOntology.populateFromFile(outputOntologyMap) sequenceOntology._id = "so-xp-simple" self.repo.insertOntology(sequenceOntology) self.repo.addOntology(sequenceOntology) vcfFiles = [ "brca1_1kgPhase3_variants.vcf", "brca1_WASH7P_annotation.vcf", "brca1_OR4F_annotation.vcf" ] for vcfFile in vcfFiles: self.addVariantSet(vcfFile, dataset, referenceSet, sequenceOntology, bioSamples) # Sequence annotations seqAnnFile = "brca1_gencodev19.gff3" seqAnnSrc = os.path.join(self.inputDirectory, seqAnnFile) seqAnnDest = os.path.join(self.outputDirectory, "gencodev19.db") dbgen = generate_gff3_db.Gff32Db(seqAnnSrc, seqAnnDest) dbgen.run() gencode = sequence_annotations.Gff3DbFeatureSet(dataset, "gencodev19") gencode.setOntology(sequenceOntology) gencode.populateFromFile(seqAnnDest) gencode.setReferenceSet(referenceSet) self.repo.insertFeatureSet(gencode) # add g2p featureSet g2pPath = os.path.join(self.inputDirectory, "cgd") # copy all files input directory to output path outputG2PPath = os.path.join(self.outputDirectory, "cgd") os.makedirs(outputG2PPath) for filename in glob.glob(os.path.join(g2pPath, '*.*')): shutil.copy(filename, outputG2PPath) featuresetG2P = g2p_featureset.PhenotypeAssociationFeatureSet( dataset, outputG2PPath) featuresetG2P.setOntology(sequenceOntology) featuresetG2P.setReferenceSet(referenceSet) featuresetG2P.populateFromFile(outputG2PPath) self.repo.insertFeatureSet(featuresetG2P) # add g2p phenotypeAssociationSet phenotypeAssociationSet = g2p_associationset\ .RdfPhenotypeAssociationSet(dataset, "cgd", outputG2PPath) self.repo.insertPhenotypeAssociationSet(phenotypeAssociationSet) self.repo.commit() dataset.addFeatureSet(gencode) # RNA Quantification rnaDbName = os.path.join(self.outputDirectory, "rnaseq.db") store = rnaseq2ga.RnaSqliteStore(rnaDbName) store.createTables() rnaseq2ga.rnaseq2ga(self.inputDirectory + "/rna_brca1.tsv", rnaDbName, "rna_brca1.tsv", "rsem", featureType="transcript", readGroupSetNames="HG00096", featureSetNames="gencodev19", dataset=dataset) rnaQuantificationSet = rna_quantification.SqliteRnaQuantificationSet( dataset, "rnaseq") rnaQuantificationSet.setReferenceSet(referenceSet) rnaQuantificationSet.populateFromFile(rnaDbName) self.repo.insertRnaQuantificationSet(rnaQuantificationSet) self.repo.commit()