subset = data_model.iloc[sel] ; txt = 'Synthetics_based_on_5_upholes' fig, m_axs = plt.subplots(sample_rows,4,figsize=(13,6*sample_rows)) fig.subplots_adjust(wspace=0.45) i=0 for (ax1,ax2,ax3,ax4), (_,files) in zip(m_axs, subset.iterrows()): print("file = ",files['shot']) input_data = ReadSegyio(segyfile=files['shot'], keep_hdrs=[],drop_hdrs=[], gather_id="FieldRecord",verbose=2) dt = input_data.sample_rate/1000 # Extract numpy array with trace values and transpose so # col=time and row=trace d = input_data.data["gather"][0].T # Apply simple processing: tpow gain to balance amplitudes upto time=maxt d = gains.tpow(d,dt,tpow=0.25,tmin=0,maxt=2) # 95th percentile gain to clip large outliers d = gains.perc(d,95) tmax = (input_data.n_samples-1)*dt d = gains.standardize(d) ax1.imshow(d,cmap='Greys',aspect='auto',extent=[0,DX*input_data.n_traces, 1000*dt*input_data.n_samples,0]) if i==0: ax1.set_title('data') if i==len(subset)-1: ax1.set_xlabel('Offset (m)') ax1.set_ylabel('Time (ms)') # Convert shot gather to phase velocity vs. frequency panel fv_abs = np.squeeze(d_to_fv(d,dt=dt,side=1,f_abs=0).numpy()) fvimg1 = ax2.imshow(fv_abs,cmap='jet',aspect='auto',extent=[0,FMAX,VMIN,VMAX], vmin=-3,vmax=3)
def get_seismic_and_vpvs(data_file, model_file): """ Used in training data loader to create input and two outputs Reads data and model SEGY from path strings and returns Tensorflow objects Model: SEGY file consisting of Vp, Vs and density. This functions extracts only vp and vs and converts to float32 tensors Data: SEGY file. This function extract trace values and applies pre-processing to balance amplitudes, low-cut filter. Then the shot gather is transformed from t-x to v-f (freq vs phase velocity) The phase velocity vs. frequency panel is resized to IMSZ[0] x IMSZ[1] Data augmentation is commented out. Perhaps data augmentation is best applied in the time domain Relies on global parameter IMSZ and boolean AUGMENT! Parameters: data_file Full path to SEGY format seismic data model_filename Full path to SEGY format model Output fv (input_1) phase velocity (col) vs. frequency (row) panel (tf.float32) vp (vp_output) 1D array of velocity values (tf.float32) vs (vs_output) 1D array of velocity values (tf.float32) """ # Process filenames # Convert to numpy and then convert bytestreams to ASCII data_file = data_file.numpy().decode('ASCII') model_file = model_file.numpy().decode('ASCII') # For debugging #print("data_file: {}, model_file: {}".format(data_file, model_file)) # Read SEGY model file with SEGYIO model1d = ReadSegyio(segyfile=model_file, keep_hdrs=[], drop_hdrs=[], gather_id="FieldRecord", verbose=0) # Extract numpy array with trace values m = model1d.data["gather"][0].T # Extract Vs information vp = m[:IZMAX, 0] vs = m[:IZMAX, 1] # Convert to tensorflow Tensor dtype vp = tf.convert_to_tensor(vp) vs = tf.convert_to_tensor(vs) # Read SEGY data file with SEGYIO seismic = ReadSegyio(segyfile=data_file, keep_hdrs=[], drop_hdrs=[], gather_id="FieldRecord", verbose=0) dt = seismic.sample_rate / 1000 # Extract numpy array with trace values and transpose so # col=time and row=trace d = seismic.data["gather"][0].T # Apply simple processing: tpow gain to balance amplitudes upto time=maxt d = gains.tpow(d, dt, tpow=0.25, tmin=0, maxt=2) # Apply a high-pass filter #d = np.apply_along_axis(lambda m: butter_highpass_filter(m,order=6, # lowcut=6,fs=1/dt), # axis=0, arr=d) # 95th percentile gain to clip large outliers d = gains.perc(d, 95) # Convert shot gather to phase velocity vs. frequency panel fv = d_to_fv(d, dt=dt, side=1) #if AUGMENT: # # Randomly change amplitudes (bulk changes) # Careful: random_brightness changes the mean # fv = tf.image.random_brightness(fv, 1, seed=42) # fv = tf.image.random_contrast( fv, 0.75, 2, seed=42) # Resize image, avoid tf.image.resize # Bi-linear interpolation is fine, it preserve the amplitude ranges fairly # well if we turn off the antialias filter. More advanced schemes lessen # the dynamic range fv = tf.image.resize(fv, [IMSZ[0], IMSZ[1]], method='bilinear', antialias=False) # Force to specified dtypes to reduce memory requirements. Note that # tf.image.resize always outputs float32. These have to be consistent # with the dtypes specified in the Tout option in the tf.py_function during # loading with the parallel mapping function fv = tf.cast(fv, dtype=tf.float32) vp = tf.cast(vp, dtype=tf.float32) vs = tf.cast(vs, dtype=tf.float32) # Return dictionary so when can specify named input/output in the # Tensorflow model return ({"input_1": fv}, {"vp_output": vp, "vs_output": vs})
def get_seismic(data_file): """ Used in data loader with seismic only (in case no velocity model is available. Reads data SEGY file from path strings and returns Tensorflow object Data: SEGY file. This function extract trace values and applies pre-processing to balance amplitudes, low-cut filter. Then the shot gather is transformed from t-x to v-f (freq vs phase velocity) The phase velocity vs. frequency panel is resized to IMSZ[0] x IMSZ[1] Relies on global parameter IMSZ ! Parameters: data_file Full path to SEGY format seismic data Output fv phase velocity (col) vs. frequency (row) panel (tf.float32) """ # Process filename # Convert to numpy and then convert bytestreams to ASCII data_file = data_file.numpy().decode('ASCII') # Read SEGY data file with SEGYIO seismic = ReadSegyio(segyfile=data_file, keep_hdrs=[], drop_hdrs=[], gather_id="FieldRecord", verbose=0) dt = seismic.sample_rate / 1000 # Extract numpy array with trace values and transpose so # col=time and row=trace d = seismic.data["gather"][0].T # Apply simple processing: tpow gain to balance amplitudes upto time=maxt d = gains.tpow(d, seismic.sample_rate / 1000, tpow=0.25, tmin=0, maxt=2) # Apply a high-pass filter #d = np.apply_along_axis(lambda m: butter_highpass_filter(m,order=6, # lowcut=6,fs=1/dt), # axis=0, arr=d) # 95th percentile gain to clip large outliers d = gains.perc(d, 95) # Convert shot gather to phase velocity vs. frequency panel fv = d_to_fv(d, dt=dt, side=OFFSIDE) # Resize image, avoid tf.image.resize # Bi-linear interpolation is fine, it preserve the amplitude ranges fairly # well if we turn off the antialias filter. More advanced schemes lessen # the dynamic range fv = tf.image.resize(fv, [IMSZ[0], IMSZ[1]], method='bilinear', antialias=False) # Force to specified dtypes to reduce memory requirements. Note that # tf.image.resize always outputs float32. These have to be consistent # with the dtypes specified in the Tout option in the tf.py_function during # loading with the parallel mapping function fv = tf.cast(fv, dtype=tf.float32) return fv
#for (ax1,ax2,ax3), (_,c_row) in zip(m_axs, model_1d.sample(sample_rows).iterrows()): #for (ax1,ax2,ax3), (_,c_row) in zip(m_axs, model_2b.sample(sample_rows).iterrows()): for (ax1, ax2, ax3), (_, c_row) in zip(m_axs, subset.iterrows()): input_data = ReadSegyio(segyfile=c_row['shot'], keep_hdrs=[], drop_hdrs=[], gather_id="FieldRecord", verbose=2) input_model = ReadSegyio(segyfile=c_row['model'], keep_hdrs=[], drop_hdrs=[], gather_id="FieldRecord", verbose=2) dt = input_data.sample_rate / 1000 d = input_data.data["gather"][0].T d = gains.tpow(d, dt, tpow=0.25, tmin=0, maxt=2) d = gains.perc(d, 95) tmax = (input_data.n_samples - 1) * dt d = gains.standardize(d) fv = np.squeeze(d_to_fv(d, dt=dt, side=1).numpy()) m = input_model.data["gather"][0].T vs1d = m[:IZMAX, 1] # 0=Vp, 1=Vs, 2=rho vp1d = m[:IZMAX, 0] # 0=Vp, 1=Vs, 2=rho ax1.imshow(d, cmap='Greys', aspect='auto', extent=[ 0, DX * input_data.n_traces, 1000 * dt * input_data.n_samples, 0