示例#1
0
    init = bd.get_init(maze)
    position, blocked, walked_open, returned = bd.walk(individual, maze)
    distance_end = math.ceil(
        math.sqrt(((position[0] - end[0])**2) + ((position[1] - end[1])**2)))

    distance_init = math.ceil(
        math.sqrt(((position[0] - init[0])**2) + ((position[1] - init[1])**2)))
    # print(
    #     1000 - distance_init * (blocked + returned - walked_open),
    #     blocked,
    #     position[0],
    #     position[1],
    # )
    return (individual, max_fitness - distance_end - blocked - returned)


if __name__ == "__main__":
    maze = bd.read()
    result = gp.run(
        partial(fitness, maze),
        mutation_function=mt.random_replacement,
        crossover_function=cr.uniform,
        select_function=sl.stochastic_tournament,
        config_file="maze.cfg",
    )

    # convergence_chart(result)
    maze_result = bd.simulate(result["champion"][0], maze)
    print(result["champion"][0])
    bd.fig(maze_result, "./out/maze_result.png")
示例#2
0
    rl, rs = normalization(ind)

    r = -1
    FOn = (30 * rs + 40 * rl) / 1360
    Hn = max(0, (rs + 2 * rl - 40)) / 16
    fit = FOn + r * Hn

    return ind, fit


if __name__ == "__main__":

    result = gp.run(
        fitness,
        mutation_function=mt.bit_flip,
        crossover_function=cr.two_points,
        select_function=sl.fitness_proportionate_selection,
        config_file="radio.cfg",
        phenotype=show,
    )

    convergence_chart(result, False)
    plot_runs(result)
"""
conjunto: radio standart, luxo
dominio:
rs [0-24] -> 5 bits
rl [0-16] -> 5 bits

cromosomo: 10bits

rs + 2rl  =< 40
示例#3
0
    return individual, (fit * 0.8 + profit * 0.2) / max_fit


if __name__ == "__main__":
    parse("p_queens.cfg")
    array_length = int(environ.get("DIM"))

    profit_array = np.array(list(map(float, range(1, array_length**2 + 1))))
    op, po = math.sqrt, math.log10
    for i in range(len(profit_array)):
        profit_array[i] = op(profit_array[i])
        if not (i + 1) % array_length:
            po, op = op, po
            continue

    max_fit_profit = sum(sorted(profit_array)[-1:-array_length - 1:-1])
    # print(fitness(np.array([7, 5, 3, 1, 6, 8, 2, 4])))
    result = gp.run(
        fitness,
        mutation_function=mt.swap,
        crossover_function=cr.pmx,
        select_function=sl.stochastic_tournament,
        config_file="p_queens.cfg",
        phenotype=show_table,
        pool_size=4,
    )

    convergence_chart(result, False)
    plot_runs(result)