class WorkflowFrameworkPerformanceTestCase(PerformanceTestCase): framework_tool_and_types = True def setUp(self): super().setUp() self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) def test_run_simple(self): self._run_performance_workflow("simple") def test_run_wave(self): self._run_performance_workflow("wave_simple") def test_run_two_output(self): self._run_performance_workflow("two_output") def _run_performance_workflow(self, workflow_type): workflow_yaml = self.workflow_populator.scaling_workflow_yaml( workflow_type=workflow_type, collection_size=GALAXY_TEST_PERFORMANCE_COLLECTION_SIZE, workflow_depth=GALAXY_TEST_PERFORMANCE_WORKFLOW_DEPTH, ) run_summary = self.workflow_populator.run_workflow( workflow_yaml, test_data={}, wait=False, ) self.workflow_populator.wait_for_workflow( run_summary.workflow_id, run_summary.invocation_id, run_summary.history_id, assert_ok=True, timeout=GALAXY_TEST_PERFORMANCE_TIMEOUT, )
class MaximumWorkflowInvocationDurationTestCase( integration_util.IntegrationTestCase): framework_tool_and_types = True def setUp(self): super().setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) @classmethod def handle_galaxy_config_kwds(cls, config): config["maximum_workflow_invocation_duration"] = 20 def test(self): workflow = self.workflow_populator.load_workflow_from_resource( "test_workflow_pause") workflow_id = self.workflow_populator.create_workflow(workflow) history_id = self.dataset_populator.new_history() hda1 = self.dataset_populator.new_dataset(history_id, content="1 2 3") index_map = {'0': dict(src="hda", id=hda1["id"])} request = {} request["history"] = "hist_id=%s" % history_id request["inputs"] = dumps(index_map) request["inputs_by"] = 'step_index' url = "workflows/%s/invocations" % (workflow_id) invocation_response = self._post(url, data=request) invocation_url = url + "/" + invocation_response.json()["id"] time.sleep(5) state = self._get(invocation_url).json()["state"] assert state != "failed", state time.sleep(35) state = self._get(invocation_url).json()["state"] assert state == "failed", state
class FailJobWhenToolUnavailableTestCase(integration_util.IntegrationTestCase): require_admin_user = True def setUp(self): super(FailJobWhenToolUnavailableTestCase, self).setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) self.history_id = self.dataset_populator.new_history() @classmethod def handle_galaxy_config_kwds( cls, config, ): # config["jobs_directory"] = cls.jobs_directory # Disable tool dependency resolution. config["tool_dependency_dir"] = "none" def test_fail_job_when_tool_unavailable(self): self.workflow_populator.run_workflow(""" class: GalaxyWorkflow steps: - label: sleep run: class: GalaxyTool command: sleep 20s && echo 'hello world 2' > '$output1' outputs: output1: format: txt - tool_id: cat1 state: input1: $link: sleep#output1 queries: input2: $link: sleep#output1 """, history_id=self.history_id, assert_ok=False, wait=False) # Wait until workflow is fully scheduled, otherwise can't test effect of removing tool from queued job time.sleep(10) self._app.toolbox.remove_tool_by_id('cat1') self.dataset_populator.wait_for_history(self.history_id, assert_ok=False) state_details = self.galaxy_interactor.get( 'histories/%s' % self.history_id).json()['state_details'] assert state_details['running'] == 0 assert state_details['ok'] == 1 assert state_details['error'] == 1 failed_hda = self.dataset_populator.get_history_dataset_details( history_id=self.history_id, assert_ok=False, details=True) assert failed_hda['state'] == 'error' job = self.galaxy_interactor.get("jobs/%s" % failed_hda['creating_job']).json() assert job['state'] == 'error'
class MaximumWorkflowJobsPerSchedulingIterationTestCase( integration_util.IntegrationTestCase): framework_tool_and_types = True def setUp(self): super(MaximumWorkflowJobsPerSchedulingIterationTestCase, self).setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) self.dataset_collection_populator = DatasetCollectionPopulator( self.galaxy_interactor) @classmethod def handle_galaxy_config_kwds(cls, config): config["maximum_workflow_jobs_per_scheduling_iteration"] = 1 def do_test(self): workflow_id = self.workflow_populator.upload_yaml_workflow(""" class: GalaxyWorkflow steps: - type: input_collection - tool_id: collection_creates_pair state: input1: $link: 0 - tool_id: collection_paired_test state: f1: $link: 1#paired_output - tool_id: cat_list state: input1: $link: 2#out1 """) with self.dataset_populator.test_history() as history_id: hdca1 = self.dataset_collection_populator.create_list_in_history( history_id, contents=["a\nb\nc\nd\n", "e\nf\ng\nh\n"]).json() self.dataset_populator.wait_for_history(history_id, assert_ok=True) inputs = { '0': { "src": "hdca", "id": hdca1["id"] }, } invocation_id = self.workflow_populator.invoke_workflow( history_id, workflow_id, inputs) self.workflow_populator.wait_for_workflow(history_id, workflow_id, invocation_id) self.dataset_populator.wait_for_history(history_id, assert_ok=True) self.assertEqual( "a\nc\nb\nd\ne\ng\nf\nh\n", self.dataset_populator.get_history_dataset_content(history_id, hid=0))
def test_create_from_report(self): dataset_populator = DatasetPopulator(self.galaxy_interactor) workflow_populator = WorkflowPopulator(self.galaxy_interactor) test_data = """ input_1: value: 1.bed type: File """ with dataset_populator.test_history() as history_id: summary = workflow_populator.run_workflow(""" class: GalaxyWorkflow inputs: input_1: data outputs: output_1: outputSource: first_cat/out_file1 steps: first_cat: tool_id: cat in: input1: input_1 """, test_data=test_data, history_id=history_id) workflow_id = summary.workflow_id invocation_id = summary.invocation_id report_json = workflow_populator.workflow_report_json( workflow_id, invocation_id) assert "markdown" in report_json self._assert_has_keys(report_json, "markdown", "render_format") assert report_json["render_format"] == "markdown" markdown_content = report_json["markdown"] page_request = dict( slug="invocation-report", title="Invocation Report", invocation_id=invocation_id, ) page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 200) page_response = page_response.json() show_response = self._get(f"pages/{page_response['id']}") self._assert_status_code_is(show_response, 200) show_json = show_response.json() self._assert_has_keys(show_json, "slug", "title", "id") self.assertEqual(show_json["slug"], "invocation-report") self.assertEqual(show_json["title"], "Invocation Report") self.assertEqual(show_json["content_format"], "markdown") markdown_content = show_json["content"] assert "## Workflow Outputs" in markdown_content assert "## Workflow Inputs" in markdown_content assert "## About This Report" not in markdown_content
def test_search_workflows(self): workflow_populator = WorkflowPopulator(self.galaxy_interactor) workflow_id = workflow_populator.simple_workflow("test_for_search") search_response = self.__search("select * from workflow") assert self.__has_result_with_name( search_response, "test_for_search"), search_response.text # Deleted delete_url = self._api_url("workflows/%s" % workflow_id, use_key=True) delete(delete_url) search_response = self.__search( "select * from workflow where deleted = False") assert not self.__has_result_with_name( search_response, "test_for_search"), search_response.text
class WorkflowSyncTestCase(integration_util.IntegrationTestCase): framework_tool_and_types = True require_admin_user = True def setUp(self): super(WorkflowSyncTestCase, self).setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) @classmethod def handle_galaxy_config_kwds(cls, config): cls.workflow_directory = cls._test_driver.mkdtemp() def test_sync_format2(self): workflow_path = self._write_workflow_content( "workflow.yml", WORKFLOW_SIMPLE_CAT_TWICE) workflow_id = self.workflow_populator.import_workflow_from_path( workflow_path) with self.workflow_populator.export_for_update( workflow_id) as workflow_object: workflow_object["annotation"] = "new annotation" with open(workflow_path, "r") as f: data = yaml.safe_load(f) assert data["doc"] == "new annotation" def test_sync_ga(self): workflow_json = self.workflow_populator.load_workflow("synctest") workflow_path = self._write_workflow_content("workflow.ga", json.dumps(workflow_json)) workflow_id = self.workflow_populator.import_workflow_from_path( workflow_path) with self.workflow_populator.export_for_update( workflow_id) as workflow_object: workflow_object["annotation"] = "new annotation" with open(workflow_path, "r") as f: data = json.load(f) assert data["annotation"] == "new annotation" def _write_workflow_content(self, filename, content): workflow_path = os.path.join(self.workflow_directory, filename) with open(workflow_path, "w") as f: f.write(content) return workflow_path
class BaseWorkflowHandlerConfigurationTestCase( integration_util.IntegrationTestCase): framework_tool_and_types = True assign_with = "" def setUp(self): super().setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) self.history_id = self.dataset_populator.new_history() @classmethod def handle_galaxy_config_kwds(cls, config): config["job_config_file"] = config_file( WORKFLOW_HANDLER_JOB_CONFIG_TEMPLATE, assign_with=cls.assign_with) def _invoke_n_workflows(self, n): workflow_id = self.workflow_populator.upload_yaml_workflow( PAUSE_WORKFLOW) history_id = self.history_id hda1 = self.dataset_populator.new_dataset(history_id, content="1 2 3") index_map = {'0': dict(src="hda", id=hda1["id"])} request = {} request["history"] = "hist_id=%s" % history_id request["inputs"] = dumps(index_map) request["inputs_by"] = 'step_index' url = "workflows/%s/invocations" % (workflow_id) for i in range(n): self._post(url, data=request) def _get_workflow_invocations(self): # Consider exposing handler via the API to reduce breaking # into Galaxy's internal state. app = self._app history_id = app.security.decode_id(self.history_id) sa_session = app.model.context.current history = sa_session.query(app.model.History).get(history_id) workflow_invocations = history.workflow_invocations return workflow_invocations @property def is_app_workflow_scheduler(self): return self._app.workflow_scheduling_manager.request_monitor is not None
class PageApiTestCase(BasePageApiTestCase, SharingApiTests): api_name = "pages" def setUp(self): super().setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) def create(self, name: str) -> str: response_json = self._create_valid_page_with_slug(name) return response_json["id"] def test_create(self): response_json = self._create_valid_page_with_slug("mypage") self._assert_has_keys(response_json, "slug", "title", "id") @skip_without_tool("cat") def test_create_from_report(self): test_data = """ input_1: value: 1.bed type: File """ with self.dataset_populator.test_history() as history_id: summary = self.workflow_populator.run_workflow( """ class: GalaxyWorkflow inputs: input_1: data outputs: output_1: outputSource: first_cat/out_file1 steps: first_cat: tool_id: cat in: input1: input_1 """, test_data=test_data, history_id=history_id) workflow_id = summary.workflow_id invocation_id = summary.invocation_id report_json = self.workflow_populator.workflow_report_json( workflow_id, invocation_id) assert "markdown" in report_json self._assert_has_keys(report_json, "markdown", "render_format") assert report_json["render_format"] == "markdown" markdown_content = report_json["markdown"] page_request = dict( slug="invocation-report", title="Invocation Report", invocation_id=invocation_id, ) page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 200) page_response = page_response.json() show_response = self._get(f"pages/{page_response['id']}") self._assert_status_code_is(show_response, 200) show_json = show_response.json() self._assert_has_keys(show_json, "slug", "title", "id") self.assertEqual(show_json["slug"], "invocation-report") self.assertEqual(show_json["title"], "Invocation Report") self.assertEqual(show_json["content_format"], "markdown") markdown_content = show_json["content"] assert "## Workflow Outputs" in markdown_content assert "## Workflow Inputs" in markdown_content assert "## About This Report" not in markdown_content def test_index(self): create_response_json = self._create_valid_page_with_slug("indexpage") assert self._users_index_has_page_with_id(create_response_json["id"]) def test_index_does_not_show_unavailable_pages(self): create_response_json = self._create_valid_page_as( "*****@*****.**", "otherspageindex") assert not self._users_index_has_page_with_id( create_response_json["id"]) def test_cannot_create_pages_with_same_slug(self): page_request = self._test_page_payload(slug="mypage1") page_response_1 = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response_1, 200) page_response_2 = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response_2, 400) self._assert_error_code_is( page_response_2, error_codes.error_codes_by_name["USER_SLUG_DUPLICATE"]) def test_cannot_create_pages_with_invalid_slug(self): page_request = self._test_page_payload(slug="invalid slug!") page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 400) def test_cannot_create_page_with_invalid_content_format(self): page_request = self._test_page_payload(slug="mypageinvalidformat") page_request["content_format"] = "xml" page_response_1 = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response_1, 400) self._assert_error_code_is( page_response_1, error_codes.error_codes_by_name["USER_REQUEST_INVALID_PARAMETER"]) def test_page_requires_name(self): page_request = self._test_page_payload(slug="requires-name") del page_request['title'] page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 400) self._assert_error_code_is( page_response, error_codes.error_codes_by_name["USER_REQUEST_MISSING_PARAMETER"]) def test_page_requires_slug(self): page_request = self._test_page_payload() del page_request['slug'] page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 400) def test_delete(self): response_json = self._create_valid_page_with_slug("testdelete") delete_response = delete( self._api_url(f"pages/{response_json['id']}", use_key=True)) self._assert_status_code_is(delete_response, 204) def test_400_on_delete_invalid_page_id(self): delete_response = delete( self._api_url(f"pages/{self._random_key()}", use_key=True)) self._assert_status_code_is(delete_response, 400) self._assert_error_code_is( delete_response, error_codes.error_codes_by_name["MALFORMED_ID"]) def test_403_on_delete_unowned_page(self): page_response = self._create_valid_page_as("*****@*****.**", "otherspage") delete_response = delete( self._api_url(f"pages/{page_response['id']}", use_key=True)) self._assert_status_code_is(delete_response, 403) self._assert_error_code_is( delete_response, error_codes.error_codes_by_name["USER_DOES_NOT_OWN_ITEM"]) def test_400_on_invalid_id_encoding(self): page_request = self._test_page_payload(slug="invalid-id-encding") page_request[ "content"] = '''<p>Page!<div class="embedded-item" id="History-invaidencodedid"></div></p>''' page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 400) self._assert_error_code_is( page_response, error_codes.error_codes_by_name["MALFORMED_ID"]) def test_400_on_invalid_id_encoding_markdown(self): page_request = self._test_page_payload( slug="invalid-id-encding-markdown", content_format="markdown") page_request[ "content"] = '''```galaxy\nhistory_dataset_display(history_dataset_id=badencoding)\n```\n''' page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 400) self._assert_error_code_is( page_response, error_codes.error_codes_by_name["MALFORMED_ID"]) def test_400_on_invalid_embedded_content(self): valid_id = self.dataset_populator.new_history() page_request = self._test_page_payload(slug="invalid-embed-content") page_request[ "content"] = f'''<p>Page!<div class="embedded-item" id="CoolObject-{valid_id}"></div></p>''' page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 400) self._assert_error_code_is( page_response, error_codes.error_codes_by_name["USER_REQUEST_INVALID_PARAMETER"]) assert "embedded HTML content" in page_response.text def test_400_on_invalid_markdown_call(self): page_request = self._test_page_payload(slug="invalid-markdown-call", content_format="markdown") page_request["content"] = '''```galaxy\njob_metrics(job_id)\n```\n''' page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 400) self._assert_error_code_is( page_response, error_codes.error_codes_by_name["MALFORMED_CONTENTS"]) def test_show(self): response_json = self._create_valid_page_with_slug("pagetoshow") show_response = self._get(f"pages/{response_json['id']}") self._assert_status_code_is(show_response, 200) show_json = show_response.json() self._assert_has_keys(show_json, "slug", "title", "id") self.assertEqual(show_json["slug"], "pagetoshow") self.assertEqual(show_json["title"], "MY PAGE") self.assertEqual(show_json["content"], "<p>Page!</p>") self.assertEqual(show_json["content_format"], "html") def test_403_on_unowner_show(self): response_json = self._create_valid_page_as( "*****@*****.**", "otherspageshow") show_response = self._get(f"pages/{response_json['id']}") self._assert_status_code_is(show_response, 403) self._assert_error_code_is( show_response, error_codes.error_codes_by_name["USER_CANNOT_ACCESS_ITEM"]) def test_501_on_download_pdf_when_service_unavailable(self): configuration = self.dataset_populator.get_configuration() can_produce_markdown = configuration["markdown_to_pdf_available"] if can_produce_markdown: raise SkipTest( "Skipping test because server does implement markdown conversion to PDF" ) page_request = self._test_page_payload( slug="md-page-to-pdf-not-implemented", content_format="markdown") page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 200) page_id = page_response.json()['id'] pdf_response = self._get(f"pages/{page_id}.pdf") api_asserts.assert_status_code_is(pdf_response, 501) api_asserts.assert_error_code_is( pdf_response, error_codes. error_codes_by_name["SERVER_NOT_CONFIGURED_FOR_REQUEST"]) def test_pdf_when_service_available(self): configuration = self.dataset_populator.get_configuration() can_produce_markdown = configuration["markdown_to_pdf_available"] if not can_produce_markdown: raise SkipTest( "Skipping test because server does not implement markdown conversion to PDF" ) page_request = self._test_page_payload(slug="md-page-to-pdf", content_format="markdown") page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 200) page_id = page_response.json()['id'] pdf_response = self._get(f"pages/{page_id}.pdf") api_asserts.assert_status_code_is(pdf_response, 200) assert "application/pdf" in pdf_response.headers['content-type'] assert pdf_response.content[0:4] == b"%PDF" def test_400_on_download_pdf_when_unsupported_content_format(self): page_request = self._test_page_payload(slug="html-page-to-pdf", content_format="html") page_response = self._post("pages", page_request, json=True) self._assert_status_code_is(page_response, 200) page_id = page_response.json()['id'] pdf_response = self._get(f"pages/{page_id}.pdf") self._assert_status_code_is(pdf_response, 400) def _users_index_has_page_with_id(self, id): index_response = self._get("pages") self._assert_status_code_is(index_response, 200) pages = index_response.json() return id in (_["id"] for _ in pages)
class JobsApiTestCase(ApiTestCase, TestsTools): def setUp(self): super().setUp() self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.dataset_collection_populator = DatasetCollectionPopulator( self.galaxy_interactor) @uses_test_history(require_new=True) def test_index(self, history_id): # Create HDA to ensure at least one job exists... self.__history_with_new_dataset(history_id) jobs = self.__jobs_index() assert "upload1" in map(itemgetter("tool_id"), jobs) @uses_test_history(require_new=True) def test_system_details_admin_only(self, history_id): self.__history_with_new_dataset(history_id) jobs = self.__jobs_index(admin=False) job = jobs[0] self._assert_not_has_keys(job, "external_id") jobs = self.__jobs_index(admin=True) job = jobs[0] self._assert_has_keys(job, "command_line", "external_id") @uses_test_history(require_new=True) def test_admin_job_list(self, history_id): self.__history_with_new_dataset(history_id) jobs_response = self._get("jobs?view=admin_job_list", admin=False) assert jobs_response.status_code == 403 assert jobs_response.json( )['err_msg'] == 'Only admins can use the admin_job_list view' jobs = self._get("jobs?view=admin_job_list", admin=True).json() job = jobs[0] self._assert_has_keys(job, "command_line", "external_id", 'handler') @uses_test_history(require_new=True) def test_index_state_filter(self, history_id): # Initial number of ok jobs original_count = len(self.__uploads_with_state("ok")) # Run through dataset upload to ensure num uplaods at least greater # by 1. self.__history_with_ok_dataset(history_id) # Verify number of ok jobs is actually greater. count_increased = False for _ in range(10): new_count = len(self.__uploads_with_state("ok")) if original_count < new_count: count_increased = True break time.sleep(.1) if not count_increased: template = "Jobs in ok state did not increase (was %d, now %d)" message = template % (original_count, new_count) raise AssertionError(message) @uses_test_history(require_new=True) def test_index_date_filter(self, history_id): self.__history_with_new_dataset(history_id) two_weeks_ago = (datetime.datetime.utcnow() - datetime.timedelta(14)).isoformat() last_week = (datetime.datetime.utcnow() - datetime.timedelta(7)).isoformat() next_week = (datetime.datetime.utcnow() + datetime.timedelta(7)).isoformat() today = datetime.datetime.utcnow().isoformat() tomorrow = (datetime.datetime.utcnow() + datetime.timedelta(1)).isoformat() jobs = self.__jobs_index(data={ "date_range_min": today[0:10], "date_range_max": tomorrow[0:10] }) assert len(jobs) > 0 today_job_id = jobs[0]["id"] jobs = self.__jobs_index(data={ "date_range_min": two_weeks_ago, "date_range_max": last_week }) assert today_job_id not in map(itemgetter("id"), jobs) jobs = self.__jobs_index(data={ "date_range_min": last_week, "date_range_max": next_week }) assert today_job_id in map(itemgetter("id"), jobs) @uses_test_history(require_new=True) def test_index_history(self, history_id): self.__history_with_new_dataset(history_id) jobs = self.__jobs_index(data={"history_id": history_id}) assert len(jobs) > 0 with self.dataset_populator.test_history() as other_history_id: jobs = self.__jobs_index(data={"history_id": other_history_id}) assert len(jobs) == 0 @uses_test_history(require_new=True) def test_index_workflow_and_invocation_filter(self, history_id): workflow_simple = """ class: GalaxyWorkflow name: Simple Workflow inputs: input1: data outputs: wf_output_1: outputSource: first_cat/out_file1 steps: first_cat: tool_id: cat1 in: input1: input1 """ summary = self.workflow_populator.run_workflow( workflow_simple, history_id=history_id, test_data={"input1": "hello world"}) invocation_id = summary.invocation_id workflow_id = self._get( f"invocations/{invocation_id}").json()['workflow_id'] self.workflow_populator.wait_for_invocation(workflow_id, invocation_id) jobs1 = self.__jobs_index(data={"workflow_id": workflow_id}) assert len(jobs1) == 1 jobs2 = self.__jobs_index(data={"invocation_id": invocation_id}) assert len(jobs2) == 1 assert jobs1 == jobs2 @uses_test_history(require_new=True) def test_index_workflow_filter_implicit_jobs(self, history_id): workflow_id = self.workflow_populator.upload_yaml_workflow(""" class: GalaxyWorkflow inputs: input_datasets: collection steps: multi_data_optional: tool_id: multi_data_optional in: input1: input_datasets """) hdca_id = self.dataset_collection_populator.create_list_of_list_in_history( history_id).json() self.dataset_populator.wait_for_history(history_id, assert_ok=True) inputs = { '0': self.dataset_populator.ds_entry(hdca_id), } invocation_id = self.workflow_populator.invoke_workflow_and_wait( workflow_id, history_id=history_id, inputs=inputs, assert_ok=True) jobs1 = self.__jobs_index(data={"workflow_id": workflow_id}) jobs2 = self.__jobs_index(data={"invocation_id": invocation_id}) assert len(jobs1) == len(jobs2) == 1 second_invocation_id = self.workflow_populator.invoke_workflow_and_wait( workflow_id, history_id=history_id, inputs=inputs, assert_ok=True) workflow_jobs = self.__jobs_index(data={"workflow_id": workflow_id}) second_invocation_jobs = self.__jobs_index( data={"invocation_id": second_invocation_id}) assert len(workflow_jobs) == 2 assert len(second_invocation_jobs) == 1 @uses_test_history(require_new=True) def test_index_limit_and_offset_filter(self, history_id): self.__history_with_new_dataset(history_id) jobs = self.__jobs_index(data={"history_id": history_id}) assert len(jobs) > 0 length = len(jobs) jobs = self.__jobs_index(data={"history_id": history_id, "offset": 1}) assert len(jobs) == length - 1 jobs = self.__jobs_index(data={"history_id": history_id, "limit": 0}) assert len(jobs) == 0 @uses_test_history(require_new=True) def test_index_user_filter(self, history_id): test_user_email = "*****@*****.**" user = self._setup_user(test_user_email) with self._different_user(email=test_user_email): # User should be able to jobs for their own ID. jobs = self.__jobs_index(data={"user_id": user["id"]}) assert jobs == [] # Admin should be able to see jobs of another user. jobs = self.__jobs_index(data={"user_id": user["id"]}, admin=True) assert jobs == [] # Normal user should not be able to see jobs of another user. jobs_response = self._get("jobs", data={"user_id": user["id"]}) self._assert_status_code_is(jobs_response, 403) assert jobs_response.json() == { "err_msg": "Only admins can index the jobs of others", "err_code": 403006 } @uses_test_history(require_new=True) def test_index_multiple_states_filter(self, history_id): # Initial number of ok jobs original_count = len(self.__uploads_with_state("ok", "new")) # Run through dataset upload to ensure num uplaods at least greater # by 1. self.__history_with_ok_dataset(history_id) # Verify number of ok jobs is actually greater. new_count = len(self.__uploads_with_state("new", "ok")) assert original_count < new_count, new_count @uses_test_history(require_new=True) def test_show(self, history_id): job_properties_tool_run = self.dataset_populator.run_tool( tool_id="job_properties", inputs={}, history_id=history_id, ) first_job = self.__jobs_index()[0] self._assert_has_key(first_job, 'id', 'state', 'exit_code', 'update_time', 'create_time') job_id = job_properties_tool_run["jobs"][0]["id"] show_jobs_response = self.dataset_populator.get_job_details(job_id) self._assert_status_code_is(show_jobs_response, 200) job_details = show_jobs_response.json() self._assert_has_key(job_details, 'id', 'state', 'exit_code', 'update_time', 'create_time') show_jobs_response = self.dataset_populator.get_job_details(job_id, full=True) self._assert_status_code_is(show_jobs_response, 200) job_details = show_jobs_response.json() self._assert_has_key( job_details, "create_time", "exit_code", "id", "job_messages", "job_stderr", "job_stdout", "state", "stderr", "stdout", "tool_stderr", "tool_stdout", "update_time", ) self.dataset_populator.wait_for_job(job_id, assert_ok=True) show_jobs_response = self.dataset_populator.get_job_details(job_id, full=True) job_details = show_jobs_response.json() assert "The bool is not true\n" not in job_details["job_stdout"] assert "The bool is very not true\n" not in job_details["job_stderr"] assert job_details["tool_stdout"] == "The bool is not true\n" assert job_details["tool_stderr"] == "The bool is very not true\n" assert "The bool is not true\n" in job_details["stdout"] assert "The bool is very not true\n" in job_details["stderr"] @uses_test_history(require_new=True) def test_show_security(self, history_id): self.__history_with_new_dataset(history_id) jobs_response = self._get("jobs", data={"history_id": history_id}) job = jobs_response.json()[0] job_id = job["id"] job_lock_response = self._get("job_lock", admin=True) job_lock_response.raise_for_status() assert not job_lock_response.json()["active"] show_jobs_response = self._get(f"jobs/{job_id}", admin=False) self._assert_not_has_keys(show_jobs_response.json(), "external_id") # TODO: Re-activate test case when API accepts privacy settings # with self._different_user(): # show_jobs_response = self._get( "jobs/%s" % job_id, admin=False ) # self._assert_status_code_is( show_jobs_response, 200 ) show_jobs_response = self._get(f"jobs/{job_id}", admin=True) self._assert_has_keys(show_jobs_response.json(), "command_line", "external_id") def _run_detect_errors(self, history_id, inputs): payload = self.dataset_populator.run_tool_payload( tool_id='detect_errors_aggressive', inputs=inputs, history_id=history_id, ) return self._post("tools", data=payload).json() @skip_without_tool("detect_errors_aggressive") def test_unhide_on_error(self): with self.dataset_populator.test_history() as history_id: inputs = {'error_bool': 'true'} run_response = self._run_detect_errors(history_id=history_id, inputs=inputs) job_id = run_response['jobs'][0]["id"] self.dataset_populator.wait_for_job(job_id) job = self.dataset_populator.get_job_details(job_id).json() assert job['state'] == 'error' dataset = self.dataset_populator.get_history_dataset_details( history_id=history_id, dataset_id=run_response['outputs'][0]['id'], assert_ok=False) assert dataset['visible'] def _run_map_over_error(self, history_id): hdca1 = self.dataset_collection_populator.create_list_in_history( history_id, contents=[("sample1-1", "1 2 3")]).json() inputs = { 'error_bool': 'true', 'dataset': { 'batch': True, 'values': [{ 'src': 'hdca', 'id': hdca1['id'] }], } } return self._run_detect_errors(history_id=history_id, inputs=inputs) @skip_without_tool("detect_errors_aggressive") def test_no_unhide_on_error_if_mapped_over(self): with self.dataset_populator.test_history() as history_id: run_response = self._run_map_over_error(history_id) job_id = run_response['jobs'][0]["id"] self.dataset_populator.wait_for_job(job_id) job = self.dataset_populator.get_job_details(job_id).json() assert job['state'] == 'error' dataset = self.dataset_populator.get_history_dataset_details( history_id=history_id, dataset_id=run_response['outputs'][0]['id'], assert_ok=False) assert not dataset['visible'] def test_no_hide_on_rerun(self): with self.dataset_populator.test_history() as history_id: run_response = self._run_map_over_error(history_id) job_id = run_response['jobs'][0]["id"] self.dataset_populator.wait_for_job(job_id) failed_hdca = self.dataset_populator.get_history_collection_details( history_id=history_id, content_id=run_response['implicit_collections'][0]['id'], assert_ok=False, ) first_update_time = failed_hdca['update_time'] assert failed_hdca['visible'] rerun_params = self._get(f"jobs/{job_id}/build_for_rerun").json() inputs = rerun_params['state_inputs'] inputs['rerun_remap_job_id'] = job_id rerun_response = self._run_detect_errors(history_id=history_id, inputs=inputs) rerun_job_id = rerun_response['jobs'][0]["id"] self.dataset_populator.wait_for_job(rerun_job_id) # Verify source hdca is still visible hdca = self.dataset_populator.get_history_collection_details( history_id=history_id, content_id=run_response['implicit_collections'][0]['id'], assert_ok=False, ) assert hdca['visible'] assert isoparse( hdca['update_time']) > (isoparse(first_update_time)) @skip_without_tool('empty_output') def test_common_problems(self): with self.dataset_populator.test_history() as history_id: empty_run_response = self.dataset_populator.run_tool( tool_id='empty_output', inputs={}, history_id=history_id, ) empty_hda = empty_run_response["outputs"][0] cat_empty_twice_run_response = self.dataset_populator.run_tool( tool_id='cat1', inputs={ 'input1': { 'src': 'hda', 'id': empty_hda['id'] }, 'queries_0|input2': { 'src': 'hda', 'id': empty_hda['id'] } }, history_id=history_id, ) empty_output_job = empty_run_response["jobs"][0] cat_empty_job = cat_empty_twice_run_response["jobs"][0] empty_output_common_problems_response = self._get( f"jobs/{empty_output_job['id']}/common_problems").json() cat_empty_common_problems_response = self._get( f"jobs/{cat_empty_job['id']}/common_problems").json() self._assert_has_keys(empty_output_common_problems_response, "has_empty_inputs", "has_duplicate_inputs") self._assert_has_keys(cat_empty_common_problems_response, "has_empty_inputs", "has_duplicate_inputs") assert not empty_output_common_problems_response["has_empty_inputs"] assert cat_empty_common_problems_response["has_empty_inputs"] assert not empty_output_common_problems_response[ "has_duplicate_inputs"] assert cat_empty_common_problems_response["has_duplicate_inputs"] @skip_without_tool('detect_errors_aggressive') def test_report_error(self): with self.dataset_populator.test_history() as history_id: self._run_error_report(history_id) @skip_without_tool('detect_errors_aggressive') def test_report_error_anon(self): with self._different_user(anon=True): history_id = self._get( urllib.parse.urljoin( self.url, "history/current_history_json")).json()['id'] self._run_error_report(history_id) def _run_error_report(self, history_id): payload = self.dataset_populator.run_tool_payload( tool_id='detect_errors_aggressive', inputs={'error_bool': 'true'}, history_id=history_id, ) run_response = self._post("tools", data=payload).json() job_id = run_response['jobs'][0]["id"] self.dataset_populator.wait_for_job(job_id) dataset_id = run_response['outputs'][0]['id'] response = self._post(f'jobs/{job_id}/error', data={'dataset_id': dataset_id}) assert response.status_code == 200, response.text @skip_without_tool('detect_errors_aggressive') def test_report_error_bootstrap_admin(self): with self.dataset_populator.test_history() as history_id: payload = self.dataset_populator.run_tool_payload( tool_id='detect_errors_aggressive', inputs={'error_bool': 'true'}, history_id=history_id, ) run_response = self._post("tools", data=payload, key=self.master_api_key) self._assert_status_code_is(run_response, 400) @skip_without_tool("create_2") @uses_test_history(require_new=True) def test_deleting_output_keep_running_until_all_deleted(self, history_id): job_state, outputs = self._setup_running_two_output_job( history_id, 120) self._hack_to_skip_test_if_state_ok(job_state) # Delete one of the two outputs and make sure the job is still running. self._raw_update_history_item(history_id, outputs[0]["id"], {"deleted": True}) self._hack_to_skip_test_if_state_ok(job_state) time.sleep(1) self._hack_to_skip_test_if_state_ok(job_state) state = job_state().json()["state"] assert state == "running", state # Delete the second output and make sure the job is cancelled. self._raw_update_history_item(history_id, outputs[1]["id"], {"deleted": True}) final_state = wait_on_state(job_state, assert_ok=False, timeout=15) assert final_state in ["deleting", "deleted"], final_state @skip_without_tool("create_2") @uses_test_history(require_new=True) def test_purging_output_keep_running_until_all_purged(self, history_id): job_state, outputs = self._setup_running_two_output_job( history_id, 120) # Pretty much right away after the job is running, these paths should be populated - # if they are grab them and make sure they are deleted at the end of the job. dataset_1 = self._get_history_item_as_admin(history_id, outputs[0]["id"]) dataset_2 = self._get_history_item_as_admin(history_id, outputs[1]["id"]) if "file_name" in dataset_1: output_dataset_paths = [ dataset_1["file_name"], dataset_2["file_name"] ] # This may or may not exist depending on if the test is local or not. output_dataset_paths_exist = os.path.exists( output_dataset_paths[0]) else: output_dataset_paths = [] output_dataset_paths_exist = False self._hack_to_skip_test_if_state_ok(job_state) current_state = job_state().json()["state"] assert current_state == "running", current_state # Purge one of the two outputs and make sure the job is still running. self._raw_update_history_item(history_id, outputs[0]["id"], {"purged": True}) time.sleep(1) self._hack_to_skip_test_if_state_ok(job_state) current_state = job_state().json()["state"] assert current_state == "running", current_state # Purge the second output and make sure the job is cancelled. self._raw_update_history_item(history_id, outputs[1]["id"], {"purged": True}) final_state = wait_on_state(job_state, assert_ok=False, timeout=15) assert final_state in ["deleting", "deleted"], final_state def paths_deleted(): if not os.path.exists( output_dataset_paths[0]) and not os.path.exists( output_dataset_paths[1]): return True if output_dataset_paths_exist: wait_on(paths_deleted, "path deletion") @skip_without_tool("create_2") @uses_test_history(require_new=True) def test_purging_output_cleaned_after_ok_run(self, history_id): job_state, outputs = self._setup_running_two_output_job(history_id, 10) # Pretty much right away after the job is running, these paths should be populated - # if they are grab them and make sure they are deleted at the end of the job. dataset_1 = self._get_history_item_as_admin(history_id, outputs[0]["id"]) dataset_2 = self._get_history_item_as_admin(history_id, outputs[1]["id"]) if "file_name" in dataset_1: output_dataset_paths = [ dataset_1["file_name"], dataset_2["file_name"] ] # This may or may not exist depending on if the test is local or not. output_dataset_paths_exist = os.path.exists( output_dataset_paths[0]) else: output_dataset_paths = [] output_dataset_paths_exist = False if not output_dataset_paths_exist: # Given this Galaxy configuration - there is nothing more to be tested here. # Consider throwing a skip instead. return # Purge one of the two outputs and wait for the job to complete. self._raw_update_history_item(history_id, outputs[0]["id"], {"purged": True}) wait_on_state(job_state, assert_ok=True) if output_dataset_paths_exist: time.sleep(.5) # Make sure the non-purged dataset is on disk and the purged one is not. assert os.path.exists(output_dataset_paths[1]) assert not os.path.exists(output_dataset_paths[0]) def _hack_to_skip_test_if_state_ok(self, job_state): from nose.plugins.skip import SkipTest if job_state().json()["state"] == "ok": message = "Job state switch from running to ok too quickly - the rest of the test requires the job to be in a running state. Skipping test." raise SkipTest(message) def _setup_running_two_output_job(self, history_id, sleep_time): payload = self.dataset_populator.run_tool_payload( tool_id='create_2', inputs=dict(sleep_time=sleep_time, ), history_id=history_id, ) run_response = self._post("tools", data=payload) run_response.raise_for_status() run_object = run_response.json() outputs = run_object["outputs"] jobs = run_object["jobs"] assert len(outputs) == 2 assert len(jobs) == 1 def job_state(): jobs_response = self._get(f"jobs/{jobs[0]['id']}") return jobs_response # Give job some time to get up and running. time.sleep(2) running_state = wait_on_state(job_state, skip_states=["queued", "new"], assert_ok=False, timeout=15) assert running_state == "running", running_state return job_state, outputs def _raw_update_history_item(self, history_id, item_id, data): update_url = self._api_url( f"histories/{history_id}/contents/{item_id}", use_key=True) update_response = requests.put(update_url, json=data) assert_status_code_is_ok(update_response) return update_response @skip_without_tool("cat_data_and_sleep") @uses_test_history(require_new=True) def test_resume_job(self, history_id): hda1 = self.dataset_populator.new_dataset( history_id, content="samp1\t10.0\nsamp2\t20.0\n") hda2 = self.dataset_populator.new_dataset( history_id, content="samp1\t30.0\nsamp2\t40.0\n") # Submit first job payload = self.dataset_populator.run_tool_payload( tool_id='cat_data_and_sleep', inputs={ 'sleep_time': 15, 'input1': { 'src': 'hda', 'id': hda2['id'] }, 'queries_0|input2': { 'src': 'hda', 'id': hda2['id'] } }, history_id=history_id, ) run_response = self._post("tools", data=payload).json() output = run_response["outputs"][0] # Submit second job that waits on job1 payload = self.dataset_populator.run_tool_payload( tool_id='cat1', inputs={ 'input1': { 'src': 'hda', 'id': hda1['id'] }, 'queries_0|input2': { 'src': 'hda', 'id': output['id'] } }, history_id=history_id, ) run_response = self._post("tools", data=payload).json() job_id = run_response['jobs'][0]['id'] output = run_response["outputs"][0] # Delete second jobs input while second job is waiting for first job delete_response = self._delete( f"histories/{history_id}/contents/{hda1['id']}") self._assert_status_code_is(delete_response, 200) self.dataset_populator.wait_for_history_jobs(history_id, assert_ok=False) dataset_details = self._get( f"histories/{history_id}/contents/{output['id']}").json() assert dataset_details['state'] == 'paused' # Undelete input dataset undelete_response = self._put( f"histories/{history_id}/contents/{hda1['id']}", data={'deleted': False}, json=True) self._assert_status_code_is(undelete_response, 200) resume_response = self._put(f"jobs/{job_id}/resume") self._assert_status_code_is(resume_response, 200) self.dataset_populator.wait_for_history_jobs(history_id, assert_ok=True) dataset_details = self._get( f"histories/{history_id}/contents/{output['id']}").json() assert dataset_details['state'] == 'ok' def _get_history_item_as_admin(self, history_id, item_id): response = self._get( f"histories/{history_id}/contents/{item_id}?view=detailed", admin=True) assert_status_code_is_ok(response) return response.json() @uses_test_history(require_new=True) def test_search(self, history_id): dataset_id = self.__history_with_ok_dataset(history_id) # We first copy the datasets, so that the update time is lower than the job creation time new_history_id = self.dataset_populator.new_history() copy_payload = { "content": dataset_id, "source": "hda", "type": "dataset" } copy_response = self._post(f"histories/{new_history_id}/contents", data=copy_payload, json=True) self._assert_status_code_is(copy_response, 200) inputs = json.dumps({'input1': {'src': 'hda', 'id': dataset_id}}) self._job_search(tool_id='cat1', history_id=history_id, inputs=inputs) # We test that a job can be found even if the dataset has been copied to another history new_dataset_id = copy_response.json()['id'] copied_inputs = json.dumps( {'input1': { 'src': 'hda', 'id': new_dataset_id }}) search_payload = self._search_payload(history_id=history_id, tool_id='cat1', inputs=copied_inputs) self._search(search_payload, expected_search_count=1) # Now we delete the original input HDA that was used -- we should still be able to find the job delete_respone = self._delete( f"histories/{history_id}/contents/{dataset_id}") self._assert_status_code_is(delete_respone, 200) self._search(search_payload, expected_search_count=1) # Now we also delete the copy -- we shouldn't find a job delete_respone = self._delete( f"histories/{new_history_id}/contents/{new_dataset_id}") self._assert_status_code_is(delete_respone, 200) self._search(search_payload, expected_search_count=0) @uses_test_history(require_new=True) def test_search_handle_identifiers(self, history_id): # Test that input name and element identifier of a jobs' output must match for a job to be returned. dataset_id = self.__history_with_ok_dataset(history_id) inputs = json.dumps({'input1': {'src': 'hda', 'id': dataset_id}}) self._job_search(tool_id='identifier_single', history_id=history_id, inputs=inputs) dataset_details = self._get( f"histories/{history_id}/contents/{dataset_id}").json() dataset_details['name'] = 'Renamed Test Dataset' dataset_update_response = self._put( f"histories/{history_id}/contents/{dataset_id}", data=dict(name='Renamed Test Dataset'), json=True) self._assert_status_code_is(dataset_update_response, 200) assert dataset_update_response.json()['name'] == 'Renamed Test Dataset' search_payload = self._search_payload(history_id=history_id, tool_id='identifier_single', inputs=inputs) self._search(search_payload, expected_search_count=0) @uses_test_history(require_new=True) def test_search_delete_outputs(self, history_id): dataset_id = self.__history_with_ok_dataset(history_id) inputs = json.dumps({'input1': {'src': 'hda', 'id': dataset_id}}) tool_response = self._job_search(tool_id='cat1', history_id=history_id, inputs=inputs) output_id = tool_response.json()['outputs'][0]['id'] delete_respone = self._delete( f"histories/{history_id}/contents/{output_id}") self._assert_status_code_is(delete_respone, 200) search_payload = self._search_payload(history_id=history_id, tool_id='cat1', inputs=inputs) self._search(search_payload, expected_search_count=0) @uses_test_history(require_new=True) def test_search_with_hdca_list_input(self, history_id): list_id_a = self.__history_with_ok_collection(collection_type='list', history_id=history_id) list_id_b = self.__history_with_ok_collection(collection_type='list', history_id=history_id) inputs = json.dumps({ 'f1': { 'src': 'hdca', 'id': list_id_a }, 'f2': { 'src': 'hdca', 'id': list_id_b }, }) tool_response = self._job_search(tool_id='multi_data_param', history_id=history_id, inputs=inputs) # We switch the inputs, this should not return a match inputs_switched = json.dumps({ 'f2': { 'src': 'hdca', 'id': list_id_a }, 'f1': { 'src': 'hdca', 'id': list_id_b }, }) search_payload = self._search_payload(history_id=history_id, tool_id='multi_data_param', inputs=inputs_switched) self._search(search_payload, expected_search_count=0) # We delete the ouput (this is a HDA, as multi_data_param reduces collections) # and use the correct input job definition, the job should not be found output_id = tool_response.json()['outputs'][0]['id'] delete_respone = self._delete( f"histories/{history_id}/contents/{output_id}") self._assert_status_code_is(delete_respone, 200) search_payload = self._search_payload(history_id=history_id, tool_id='multi_data_param', inputs=inputs) self._search(search_payload, expected_search_count=0) @uses_test_history(require_new=True) def test_search_delete_hdca_output(self, history_id): list_id_a = self.__history_with_ok_collection(collection_type='list', history_id=history_id) inputs = json.dumps({ 'input1': { 'src': 'hdca', 'id': list_id_a }, }) tool_response = self._job_search(tool_id='collection_creates_list', history_id=history_id, inputs=inputs) output_id = tool_response.json()['outputs'][0]['id'] # We delete a single tool output, no job should be returned delete_respone = self._delete( f"histories/{history_id}/contents/{output_id}") self._assert_status_code_is(delete_respone, 200) search_payload = self._search_payload( history_id=history_id, tool_id='collection_creates_list', inputs=inputs) self._search(search_payload, expected_search_count=0) tool_response = self._job_search(tool_id='collection_creates_list', history_id=history_id, inputs=inputs) output_collection_id = tool_response.json( )['output_collections'][0]['id'] # We delete a collection output, no job should be returned delete_respone = self._delete( f"histories/{history_id}/contents/dataset_collections/{output_collection_id}" ) self._assert_status_code_is(delete_respone, 200) search_payload = self._search_payload( history_id=history_id, tool_id='collection_creates_list', inputs=inputs) self._search(search_payload, expected_search_count=0) @uses_test_history(require_new=True) def test_search_with_hdca_pair_input(self, history_id): list_id_a = self.__history_with_ok_collection(collection_type='pair', history_id=history_id) inputs = json.dumps({ 'f1': { 'src': 'hdca', 'id': list_id_a }, 'f2': { 'src': 'hdca', 'id': list_id_a }, }) self._job_search(tool_id='multi_data_param', history_id=history_id, inputs=inputs) # We test that a job can be found even if the collection has been copied to another history new_history_id = self.dataset_populator.new_history() copy_payload = { "content": list_id_a, "source": "hdca", "type": "dataset_collection" } copy_response = self._post(f"histories/{new_history_id}/contents", data=copy_payload, json=True) self._assert_status_code_is(copy_response, 200) new_list_a = copy_response.json()['id'] copied_inputs = json.dumps({ 'f1': { 'src': 'hdca', 'id': new_list_a }, 'f2': { 'src': 'hdca', 'id': new_list_a }, }) search_payload = self._search_payload(history_id=new_history_id, tool_id='multi_data_param', inputs=copied_inputs) self._search(search_payload, expected_search_count=1) # Now we delete the original input HDCA that was used -- we should still be able to find the job delete_respone = self._delete( f"histories/{history_id}/contents/dataset_collections/{list_id_a}") self._assert_status_code_is(delete_respone, 200) self._search(search_payload, expected_search_count=1) # Now we also delete the copy -- we shouldn't find a job delete_respone = self._delete( f"histories/{history_id}/contents/dataset_collections/{new_list_a}" ) self._assert_status_code_is(delete_respone, 200) self._search(search_payload, expected_search_count=0) @uses_test_history(require_new=True) def test_search_with_hdca_list_pair_input(self, history_id): list_id_a = self.__history_with_ok_collection( collection_type='list:pair', history_id=history_id) inputs = json.dumps({ 'f1': { 'src': 'hdca', 'id': list_id_a }, 'f2': { 'src': 'hdca', 'id': list_id_a }, }) self._job_search(tool_id='multi_data_param', history_id=history_id, inputs=inputs) @uses_test_history(require_new=True) def test_search_with_hdca_list_pair_collection_mapped_over_pair_input( self, history_id): list_id_a = self.__history_with_ok_collection( collection_type='list:pair', history_id=history_id) inputs = json.dumps({ 'f1': { 'batch': True, 'values': [{ 'src': 'hdca', 'id': list_id_a, 'map_over_type': 'paired' }] }, }) self._job_search(tool_id='collection_paired_test', history_id=history_id, inputs=inputs) def _get_simple_rerun_params(self, history_id, private=False): list_id_a = self.__history_with_ok_collection( collection_type='list:pair', history_id=history_id) inputs = { 'f1': { 'batch': True, 'values': [{ 'src': 'hdca', 'id': list_id_a, 'map_over_type': 'paired' }] } } run_response = self._run( history_id=history_id, tool_id="collection_paired_test", inputs=inputs, wait_for_job=True, assert_ok=True, ) rerun_params = self._get( f"jobs/{run_response['jobs'][0]['id']}/build_for_rerun").json() # Since we call rerun on the first (and only) job we should get the expanded input # which is a dataset collection element (and not the list:pair hdca that was used as input to the original # job). assert rerun_params['state_inputs']['f1']['values'][0]['src'] == 'dce' if private: hdca = self.dataset_populator.get_history_collection_details( history_id=history_id, content_id=list_id_a) for element in hdca['elements'][0]['object']['elements']: self.dataset_populator.make_private(history_id, element['object']['id']) return rerun_params @skip_without_tool("collection_paired_test") @uses_test_history(require_new=False) def test_job_build_for_rerun(self, history_id): rerun_params = self._get_simple_rerun_params(history_id) self._run( history_id=history_id, tool_id="collection_paired_test", inputs=rerun_params['state_inputs'], wait_for_job=True, assert_ok=True, ) @skip_without_tool("collection_paired_test") @uses_test_history(require_new=False) def test_dce_submission_security(self, history_id): rerun_params = self._get_simple_rerun_params(history_id, private=True) with self._different_user(): other_history_id = self.dataset_populator.new_history() response = self._run( history_id=other_history_id, tool_id="collection_paired_test", inputs=rerun_params['state_inputs'], wait_for_job=False, assert_ok=False, ) assert response.status_code == 403 @skip_without_tool("identifier_collection") @uses_test_history(require_new=False) def test_job_build_for_rerun_list_list(self, history_id): list_id_a = self.__history_with_ok_collection(collection_type='list', history_id=history_id) list_id_b = self.__history_with_ok_collection(collection_type='list', history_id=history_id) list_list = self.dataset_collection_populator.create_nested_collection( history_id=history_id, collection_type='list:list', name='list list collection', collection=[list_id_a, list_id_b]).json() list_list_id = list_list['id'] first_element = list_list['elements'][0] assert first_element['element_type'] == 'dataset_collection' assert first_element['element_identifier'] == 'test0' assert first_element['model_class'] == 'DatasetCollectionElement' inputs = { 'input1': { 'batch': True, 'values': [{ 'src': 'hdca', 'id': list_list_id, 'map_over_type': 'list' }] } } run_response = self._run( history_id=history_id, tool_id="identifier_collection", inputs=inputs, wait_for_job=True, assert_ok=True, ) assert len(run_response['jobs']) == 2 rerun_params = self._get( f"jobs/{run_response['jobs'][0]['id']}/build_for_rerun").json() # Since we call rerun on the first (and only) job we should get the expanded input # which is a dataset collection element (and not the list:list hdca that was used as input to the original # job). assert rerun_params['state_inputs']['input1']['values'][0][ 'src'] == 'dce' rerun_response = self._run( history_id=history_id, tool_id="identifier_collection", inputs=rerun_params['state_inputs'], wait_for_job=True, assert_ok=True, ) assert len(rerun_response['jobs']) == 1 rerun_content = self.dataset_populator.get_history_dataset_content( history_id=history_id, dataset=rerun_response['outputs'][0]) run_content = self.dataset_populator.get_history_dataset_content( history_id=history_id, dataset=run_response['outputs'][0]) assert rerun_content == run_content def _job_search(self, tool_id, history_id, inputs): search_payload = self._search_payload(history_id=history_id, tool_id=tool_id, inputs=inputs) empty_search_response = self._post("jobs/search", data=search_payload) self._assert_status_code_is(empty_search_response, 200) self.assertEqual(len(empty_search_response.json()), 0) tool_response = self._post("tools", data=search_payload) self.dataset_populator.wait_for_tool_run(history_id, run_response=tool_response) self._search(search_payload, expected_search_count=1) return tool_response def _search_payload(self, history_id, tool_id, inputs, state='ok'): search_payload = dict(tool_id=tool_id, inputs=inputs, history_id=history_id, state=state) return search_payload def _search(self, payload, expected_search_count=1): # in case job and history aren't updated at exactly the same # time give time to wait for _ in range(5): search_count = self._search_count(payload) if search_count == expected_search_count: break time.sleep(1) assert search_count == expected_search_count, "expected to find %d jobs, got %d jobs" % ( expected_search_count, search_count) return search_count def _search_count(self, search_payload): search_response = self._post("jobs/search", data=search_payload) self._assert_status_code_is(search_response, 200) search_json = search_response.json() return len(search_json) def __uploads_with_state(self, *states): jobs_response = self._get("jobs", data=dict(state=states)) self._assert_status_code_is(jobs_response, 200) jobs = jobs_response.json() assert not [j for j in jobs if not j['state'] in states] return [j for j in jobs if j['tool_id'] == 'upload1'] def __history_with_new_dataset(self, history_id): dataset_id = self.dataset_populator.new_dataset(history_id)["id"] return dataset_id def __history_with_ok_dataset(self, history_id): dataset_id = self.dataset_populator.new_dataset(history_id, wait=True)["id"] return dataset_id def __history_with_ok_collection(self, collection_type='list', history_id=None): if not history_id: history_id = self.dataset_populator.new_history() if collection_type == 'list': fetch_response = self.dataset_collection_populator.create_list_in_history( history_id, direct_upload=True).json() elif collection_type == 'pair': fetch_response = self.dataset_collection_populator.create_pair_in_history( history_id, direct_upload=True).json() elif collection_type == 'list:pair': fetch_response = self.dataset_collection_populator.create_list_of_pairs_in_history( history_id).json() self.dataset_collection_populator.wait_for_fetched_collection( fetch_response) return fetch_response["outputs"][0]['id'] def __jobs_index(self, **kwds): jobs_response = self._get("jobs", **kwds) self._assert_status_code_is(jobs_response, 200) jobs = jobs_response.json() assert isinstance(jobs, list) return jobs
def setUp(self): super(BaseWorkflowHandlerConfigurationTestCase, self).setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) self.history_id = self.dataset_populator.new_history()
def setUp(self): super(MaximumWorkflowJobsPerSchedulingIterationTestCase, self).setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) self.dataset_collection_populator = DatasetCollectionPopulator( self.galaxy_interactor)
def setUp(self): super(MaximumWorkflowInvocationDurationTestCase, self).setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor)
class MaximumWorkflowJobsPerSchedulingIterationTestCase( integration_util.IntegrationTestCase): framework_tool_and_types = True def setUp(self): super().setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) self.dataset_collection_populator = DatasetCollectionPopulator( self.galaxy_interactor) @classmethod def handle_galaxy_config_kwds(cls, config): config["maximum_workflow_jobs_per_scheduling_iteration"] = 1 def test_collection_explicit_and_implicit(self): workflow_id = self.workflow_populator.upload_yaml_workflow(""" class: GalaxyWorkflow steps: - type: input_collection - tool_id: collection_creates_pair state: input1: $link: 0 - tool_id: collection_paired_test state: f1: $link: 1/paired_output - tool_id: cat_list state: input1: $link: 2/out1 """) with self.dataset_populator.test_history() as history_id: hdca1 = self.dataset_collection_populator.create_list_in_history( history_id, contents=["a\nb\nc\nd\n", "e\nf\ng\nh\n"]).json() self.dataset_populator.wait_for_history(history_id, assert_ok=True) inputs = { '0': { "src": "hdca", "id": hdca1["id"] }, } invocation_id = self.workflow_populator.invoke_workflow( history_id, workflow_id, inputs) self.workflow_populator.wait_for_workflow(history_id, workflow_id, invocation_id) self.dataset_populator.wait_for_history(history_id, assert_ok=True) self.assertEqual( "a\nc\nb\nd\ne\ng\nf\nh\n", self.dataset_populator.get_history_dataset_content(history_id, hid=0)) def test_scheduling_rounds(self): with self.dataset_populator.test_history() as history_id: invocation_response = self.workflow_populator.run_workflow( """ class: GalaxyWorkflow inputs: input1: data text_input: text steps: first_cat: tool_id: cat1 in: input1: input1 second_cat: tool_id: cat1 in: input1: first_cat/out_file1 collection_creates_dynamic_list_of_pairs: tool_id: collection_creates_dynamic_list_of_pairs in: file: second_cat/out_file1 count_multi_file: tool_id: count_multi_file in: input1: collection_creates_dynamic_list_of_pairs/list_output outputs: wf_output_1: outputSource: collection_creates_dynamic_list_of_pairs/list_output """, test_data=""" input1: value: 1.fasta type: File name: fasta1 text_input: foo """, history_id=history_id) invocation = self._get("/invocations/{}".format( invocation_response.invocation_id)).json() assert 'wf_output_1' in invocation['output_collections']
class WorkflowRefactoringIntegrationTestCase( integration_util.IntegrationTestCase, UsesShed): framework_tool_and_types = True def setUp(self): super().setUp() self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) def test_basic_refactoring_types(self): self.workflow_populator.upload_yaml_workflow(REFACTORING_SIMPLE_TEST) actions = [ { "action_type": "update_name", "name": "my cool new name" }, ] self._refactor(actions) assert self._latest_workflow.stored_workflow.name == "my cool new name" actions = [ { "action_type": "update_annotation", "annotation": "my cool new annotation" }, ] response = self._refactor(actions) assert response.workflow["annotation"] == "my cool new annotation" actions = [ { "action_type": "update_license", "license": "AFL-3.0" }, ] self._refactor(actions) assert self._latest_workflow.license == "AFL-3.0" actions = [ { "action_type": "update_creator", "creator": [{ "class": "Person", "name": "Mary" }] }, ] self._refactor(actions) assert self._latest_workflow.creator_metadata[0]["class"] == "Person" assert self._latest_workflow.creator_metadata[0]["name"] == "Mary" actions = [{ "action_type": "update_report", "report": { "markdown": "my report..." } }] self._refactor(actions) assert self._latest_workflow.reports_config[ "markdown"] == "my report..." assert self._latest_workflow.step_by_index(0).label == "test_input" actions = [ { "action_type": "update_step_label", "step": { "order_index": 0 }, "label": "new_label" }, ] self._refactor(actions) assert self._latest_workflow.step_by_index(0).label == "new_label" actions = [ { "action_type": "update_step_position", "step": { "order_index": 0 }, "position": { "left": 3, "top": 5 } }, ] self._refactor(actions) assert self._latest_workflow.step_by_index(0).label == "new_label" assert self._latest_workflow.step_by_index(0).position["left"] == 3 assert self._latest_workflow.step_by_index(0).position["top"] == 5 # Build raw steps... actions = [ { "action_type": "add_step", "type": "parameter_input", "label": "new_param", "tool_state": { "parameter_type": "text" }, "position": { "left": 10, "top": 50 } }, ] self._refactor(actions) assert self._latest_workflow.step_by_label( "new_param").label == "new_param" assert self._latest_workflow.step_by_label( "new_param").tool_inputs.get("optional", False) is False assert self._latest_workflow.step_by_label( "new_param").position["left"] == 10 assert self._latest_workflow.step_by_label( "new_param").position["top"] == 50 # Cleaner syntax for defining inputs... actions = [ { "action_type": "add_input", "type": "text", "label": "new_param2", "optional": True, "position": { "top": 1, "left": 2 } }, ] self._refactor(actions) assert self._latest_workflow.step_by_label( "new_param2").label == "new_param2" assert self._latest_workflow.step_by_label( "new_param2").tool_inputs.get("optional", False) is True assert self._latest_workflow.step_by_label( "new_param2").position["top"] == 1 assert self._latest_workflow.step_by_label( "new_param2").position["left"] == 2 assert len( self._latest_workflow.step_by_label("first_cat").inputs) == 1 actions = [{ "action_type": "disconnect", "input": { "label": "first_cat", "input_name": "input1" }, "output": { "label": "new_label" }, }] self._refactor(actions) assert len( self._latest_workflow.step_by_label("first_cat").inputs) == 0 actions = [{ "action_type": "connect", "input": { "label": "first_cat", "input_name": "input1" }, "output": { "label": "new_label" }, }] self._refactor(actions) assert len( self._latest_workflow.step_by_label("first_cat").inputs) == 1 # Re-disconnect so we can test extract_input actions = [{ "action_type": "disconnect", "input": { "label": "first_cat", "input_name": "input1" }, "output": { "label": "new_label" }, }] self._refactor(actions) # try to create an input for first_cat/input1 automatically actions = [{ "action_type": "extract_input", "input": { "label": "first_cat", "input_name": "input1" }, "label": "extracted_input", }] self._refactor(actions) assert self._latest_workflow.step_by_label("extracted_input") assert len( self._latest_workflow.step_by_label("first_cat").inputs) == 1 actions = [{ "action_type": "update_output_label", "output": { "label": "first_cat", "output_name": "out_file1" }, "output_label": "new_wf_out", }] self._refactor(actions) assert self._latest_workflow.step_by_label( "first_cat").workflow_outputs[0].label == "new_wf_out" def test_basic_refactoring_types_dry_run(self): self.workflow_populator.upload_yaml_workflow(REFACTORING_SIMPLE_TEST) actions = [ { "action_type": "update_name", "name": "my cool new name" }, ] response = self._dry_run(actions) assert response.workflow["name"] == "my cool new name" actions = [ { "action_type": "update_annotation", "annotation": "my cool new annotation" }, ] response = self._dry_run(actions) assert response.workflow["annotation"] == "my cool new annotation" actions = [ { "action_type": "update_license", "license": "AFL-3.0" }, ] response = self._dry_run(actions) assert response.workflow["license"] == "AFL-3.0" actions = [ { "action_type": "update_creator", "creator": [{ "class": "Person", "name": "Mary" }] }, ] response = self._dry_run(actions) creator_list = response.workflow["creator"] assert isinstance(creator_list, list) creator = creator_list[0] assert creator["class"] == "Person" assert creator["name"] == "Mary" actions = [{ "action_type": "update_report", "report": { "markdown": "my report..." } }] response = self._dry_run(actions) assert response.workflow["report"]["markdown"] == "my report..." actions = [ { "action_type": "add_step", "type": "parameter_input", "label": "new_param", "tool_state": { "parameter_type": "text" }, "position": { "left": 10, "top": 50 } }, ] response = self._dry_run(actions) workflow_dict = response.workflow assert _step_with_label(workflow_dict, "new_param") actions = [{ "action_type": "update_output_label", "output": { "label": "first_cat", "output_name": "out_file1" }, "output_label": "new_wf_out", }] response = self._dry_run(actions) workflow_dict = response.workflow first_cat_step = _step_with_label(workflow_dict, "first_cat") assert first_cat_step["workflow_outputs"][0]["label"] == "new_wf_out" def test_refactoring_legacy_parameters(self): wf = self.workflow_populator.load_workflow_from_resource( "test_workflow_randomlines_legacy_params") self.workflow_populator.create_workflow(wf) actions = [ { "action_type": "extract_untyped_parameter", "name": "seed" }, { "action_type": "extract_untyped_parameter", "name": "num", "label": "renamed_num" }, ] self._refactor(actions) assert self._latest_workflow.step_by_label( "seed").tool_inputs["parameter_type"] == "text" assert self._latest_workflow.step_by_label( "renamed_num").tool_inputs["parameter_type"] == "integer" random_lines_state = self._latest_workflow.step_by_index(2).tool_inputs assert "num_lines" in random_lines_state num_lines = random_lines_state["num_lines"] assert isinstance(num_lines, dict) assert "__class__" in num_lines assert num_lines["__class__"] == 'ConnectedValue' assert "seed_source" in random_lines_state seed_source = random_lines_state["seed_source"] assert isinstance(seed_source, dict) assert "seed" in seed_source seed = seed_source["seed"] assert isinstance(seed, dict) assert "__class__" in seed assert seed["__class__"] == 'ConnectedValue' # cannot handle mixed, incompatible types on the inputs though wf = self.workflow_populator.load_workflow_from_resource( "test_workflow_randomlines_legacy_params_mixed_types") self.workflow_populator.create_workflow(wf) actions = [ { "action_type": "extract_untyped_parameter", "name": "mixed_param" }, ] expected_exception = None try: self._refactor(actions) except Exception as e: expected_exception = e assert expected_exception assert "input types" in str(expected_exception) def test_refactoring_legacy_parameters_without_tool_state(self): # test parameters used in PJA without being used in tool state. # These will work fine with the simplified workflow UI, but should probably # be formalized and assigned a unique label and informative annotation. self.workflow_populator.upload_yaml_workflow(""" class: GalaxyWorkflow inputs: test_input: data steps: first_cat: tool_id: cat in: input1: test_input outputs: out_file1: rename: "${pja_only_param} name" """) actions = [ { "action_type": "extract_untyped_parameter", "name": "pja_only_param" }, ] self._refactor(actions) assert self._latest_workflow.step_by_label( "pja_only_param").tool_inputs["parameter_type"] == "text" def test_refactoring_legacy_parameters_without_tool_state_dry_run(self): # same as above but dry run... self.workflow_populator.upload_yaml_workflow(""" class: GalaxyWorkflow inputs: test_input: data steps: first_cat: tool_id: cat in: input1: test_input outputs: out_file1: rename: "${pja_only_param} name" """) actions = [ { "action_type": "extract_untyped_parameter", "name": "pja_only_param" }, ] response = self._dry_run(actions) new_step = _step_with_label(response.workflow, "pja_only_param") state_str = new_step["tool_state"] state = json.loads(state_str) assert state["parameter_type"] == "text" def test_refactoring_legacy_parameters_without_tool_state_relabel(self): # same thing as above, but apply relabeling and ensure PJA gets updated. self.workflow_populator.upload_yaml_workflow(""" class: GalaxyWorkflow inputs: test_input: data steps: first_cat: tool_id: cat in: input1: test_input outputs: out_file1: rename: "${pja_only_param} name" """) actions = [ { "action_type": "extract_untyped_parameter", "name": "pja_only_param", "label": "new_label" }, ] self._refactor(actions) assert self._latest_workflow.step_by_label( "new_label").tool_inputs["parameter_type"] == "text" pjas = self._latest_workflow.step_by_label( "first_cat").post_job_actions assert len(pjas) == 1 pja = pjas[0] assert "newname" in pja.action_arguments assert "${new_label}" in pja.action_arguments["newname"] def test_removing_unlabeled_workflow_outputs(self): wf = self.workflow_populator.load_workflow_from_resource( "test_workflow_randomlines_legacy_params") self.workflow_populator.create_workflow(wf) only_step = self._latest_workflow.step_by_index(0) assert len(only_step.workflow_outputs) == 1 actions = [ { "action_type": "remove_unlabeled_workflow_outputs" }, ] self._refactor(actions) only_step = self._latest_workflow.step_by_index(0) assert len(only_step.workflow_outputs) == 0 def test_fill_defaults_option(self): # this is a prereq for other state filling refactoring tests that # would be better in API tests for workflow import options but fill # defaults happens automatically on export, so this might only be # testable in an integration test currently. # populating a workflow with incomplete state... wf = self.workflow_populator.load_workflow_from_resource( "test_workflow_two_random_lines") ts = json.loads(wf["steps"]["0"]["tool_state"]) del ts["num_lines"] wf["steps"]["0"]["tool_state"] = json.dumps(ts) self.workflow_populator.create_workflow(wf, fill_defaults=False) first_step = self._latest_workflow.step_by_label("random1") assert "num_lines" not in first_step.tool_inputs self.workflow_populator.create_workflow(wf, fill_defaults=True) first_step = self._latest_workflow.step_by_label("random1") assert "num_lines" in first_step.tool_inputs assert json.loads(first_step.tool_inputs["num_lines"]) == 1 def test_refactor_works_with_subworkflows(self): self.workflow_populator.upload_yaml_workflow(WORKFLOW_NESTED_SIMPLE) actions = [ { "action_type": "update_step_label", "step": { "label": "nested_workflow" }, "label": "new_nested_workflow" }, ] self._refactor(actions) self._latest_workflow.step_by_label("new_nested_workflow") def test_refactor_works_with_incomplete_state(self): # populating a workflow with incomplete state... wf = self.workflow_populator.load_workflow_from_resource( "test_workflow_two_random_lines") ts = json.loads(wf["steps"]["0"]["tool_state"]) del ts["num_lines"] wf["steps"]["0"]["tool_state"] = json.dumps(ts) self.workflow_populator.create_workflow(wf, fill_defaults=False) assert self._latest_workflow.step_by_index(0).label == "random1" actions = [ { "action_type": "update_step_label", "step": { "order_index": 0 }, "label": "random1_new" }, ] self._refactor(actions) first_step = self._latest_workflow.step_by_label("random1_new") assert "num_lines" not in first_step.tool_inputs def test_refactor_works_with_missing_tools(self): # populating a workflow with incomplete state... wf = self.workflow_populator.load_workflow_from_resource( "test_workflow_two_random_lines") wf["steps"]["1"]["tool_id"] = "random-missing" wf["steps"]["1"]["content_id"] = "random-missing" self.workflow_populator.create_workflow(wf, fill_defaults=False) assert self._latest_workflow.step_by_index(1).label == "random2" assert self._latest_workflow.step_by_index( 1).tool_id == "random-missing" assert "num_lines" in self._latest_workflow.step_by_index( 1).tool_inputs actions = [ { "action_type": "update_step_label", "step": { "order_index": 1 }, "label": "random2_new" }, ] self._refactor(actions) assert self._latest_workflow.step_by_index(1).label == "random2_new" assert "num_lines" in self._latest_workflow.step_by_index( 1).tool_inputs def test_refactor_fill_step_defaults(self): self._load_two_random_lines_wf_with_missing_state() actions = [ { "action_type": "fill_step_defaults", "step": { "order_index": 0 } }, ] action_executions = self._refactor(actions).action_executions first_step = self._latest_workflow.step_by_label("random1") assert "num_lines" in first_step.tool_inputs assert len(action_executions) == 1 action_execution = action_executions[0] assert len(action_execution.messages) == 1 message = action_execution.messages[0] assert message.order_index == 0 assert message.step_label == "random1" assert message.input_name == "num_lines" # ensure other step untouched... second_step = self._latest_workflow.step_by_label("random2") assert "num_lines" not in second_step.tool_inputs def test_refactor_fill_step_defaults_dry_run(self): self._load_two_random_lines_wf_with_missing_state() actions = [ { "action_type": "fill_step_defaults", "step": { "order_index": 0 } }, ] response = self._dry_run(actions) action_executions = response.action_executions assert len(action_executions) == 1 action_execution = action_executions[0] assert len(action_execution.messages) == 1 message = action_execution.messages[0] assert message.order_index == 0 assert message.step_label == "random1" assert message.input_name == "num_lines" # TODO: # first_step = self._latest_workflow.step_by_label("random1") # assert "num_lines" in first_step.tool_inputs # ensure other step untouched... # second_step = self._latest_workflow.step_by_label("random2") # assert "num_lines" not in second_step.tool_inputs def test_refactor_fill_defaults(self): self._load_two_random_lines_wf_with_missing_state() actions = [ { "action_type": "fill_defaults" }, ] action_executions = self._refactor(actions).action_executions first_step = self._latest_workflow.step_by_label("random1") assert "num_lines" in first_step.tool_inputs second_step = self._latest_workflow.step_by_label("random2") assert "num_lines" in second_step.tool_inputs assert len(action_executions) == 1 action_execution = action_executions[0] assert len(action_execution.messages) == 2 message = action_execution.messages[0] assert message.order_index == 0 assert message.step_label == "random1" assert message.input_name == "num_lines" message = action_execution.messages[1] assert message.order_index == 1 assert message.step_label == "random2" assert message.input_name == "num_lines" def test_tool_version_upgrade_no_state_change(self): self.workflow_populator.upload_yaml_workflow(""" class: GalaxyWorkflow steps: the_step: tool_id: multiple_versions tool_version: '0.1' state: inttest: 0 """) assert self._latest_workflow.step_by_label( "the_step").tool_version == "0.1" actions = [ { "action_type": "upgrade_tool", "step": { "label": "the_step" } }, ] # t = self._app.toolbox.get_tool("multiple_versions", tool_version="0.1") # assert t is not None # assert t.version == "0.1" action_executions = self._refactor(actions).action_executions assert len(action_executions) == 1 assert len(action_executions[0].messages) == 0 assert self._latest_workflow.step_by_label( "the_step").tool_version == "0.2" def test_tool_version_upgrade_state_added(self): self.workflow_populator.upload_yaml_workflow(""" class: GalaxyWorkflow steps: the_step: tool_id: multiple_versions_changes tool_version: '0.1' state: inttest: 0 """) assert self._latest_workflow.step_by_label( "the_step").tool_version == "0.1" actions = [ { "action_type": "upgrade_tool", "step": { "label": "the_step" }, "tool_version": "0.2" }, ] action_executions = self._refactor(actions).action_executions assert self._latest_workflow.step_by_label( "the_step").tool_version == "0.2" assert len(action_executions) == 1 messages = action_executions[0].messages assert len(messages) == 1 message = messages[0] assert message.message_type == RefactorActionExecutionMessageTypeEnum.tool_state_adjustment assert message.order_index == 0 assert message.step_label == "the_step" assert message.input_name == "floattest" def test_subworkflow_upgrade_simplest(self): self.workflow_populator.upload_yaml_workflow(WORKFLOW_NESTED_SIMPLE) # second oldest workflow will be the nested workflow, grab it and update... nested_stored_workflow = self._recent_stored_workflow(2) assert len(nested_stored_workflow.workflows) == 1 self._increment_nested_workflow_version(nested_stored_workflow, num_lines_from="1", num_lines_to="2") self._app.model.session.expunge(nested_stored_workflow) # ensure subworkflow updated properly... nested_stored_workflow = self._recent_stored_workflow(2) assert len(nested_stored_workflow.workflows) == 2 updated_nested_step = nested_stored_workflow.latest_workflow.step_by_label( "random_lines") assert updated_nested_step.tool_inputs["num_lines"] == "2" # we now have an nested workflow with a simple update, download # the target workflow and ensure it is pointing at the old version pre_upgrade_native = self._download_native( self._most_recent_stored_workflow) self._assert_nested_workflow_num_lines_is(pre_upgrade_native, "1") actions = [ { "action_type": "upgrade_subworkflow", "step": { "label": "nested_workflow" } }, ] response = self._dry_run(actions) action_executions = response.action_executions assert len(action_executions) == 1 assert len(action_executions[0].messages) == 0 action_executions = self._refactor(actions).action_executions assert len(action_executions) == 1 assert len(action_executions[0].messages) == 0 post_upgrade_native = self._download_native( self._most_recent_stored_workflow) self._assert_nested_workflow_num_lines_is(post_upgrade_native, "2") def test_subworkflow_upgrade_specified(self): self.workflow_populator.upload_yaml_workflow(WORKFLOW_NESTED_SIMPLE) # second oldest workflow will be the nested workflow, grab it and update... nested_stored_workflow = self._recent_stored_workflow(2) # create two versions so we can test jumping to the middle one... self._increment_nested_workflow_version(nested_stored_workflow, num_lines_from="1", num_lines_to="20") self._increment_nested_workflow_version(nested_stored_workflow, num_lines_from="20", num_lines_to="30") self._app.model.session.expunge(nested_stored_workflow) # ensure subworkflow updated properly... nested_stored_workflow = self._recent_stored_workflow(2) assert len(nested_stored_workflow.workflows) == 3 middle_workflow_id = self._app.security.encode_id( nested_stored_workflow.workflows[1].id) actions = [ { "action_type": "upgrade_subworkflow", "step": { "label": "nested_workflow" }, "content_id": middle_workflow_id }, ] action_executions = self._dry_run(actions).action_executions assert len(action_executions) == 1 assert len(action_executions[0].messages) == 0 action_executions = self._refactor(actions).action_executions assert len(action_executions) == 1 assert len(action_executions[0].messages) == 0 post_upgrade_native = self._download_native( self._most_recent_stored_workflow) self._assert_nested_workflow_num_lines_is(post_upgrade_native, "20") def test_subworkflow_upgrade_connection_input_dropped(self): self.workflow_populator.upload_yaml_workflow(WORKFLOW_NESTED_SIMPLE) nested_stored_workflow = self._recent_stored_workflow(2) actions = [ { "action_type": "update_step_label", "step": { "label": "inner_input" }, "label": "renamed_inner_input" }, ] self._refactor(actions, stored_workflow=nested_stored_workflow) actions = [ { "action_type": "upgrade_subworkflow", "step": { "label": "nested_workflow" } }, ] action_executions = self._refactor(actions).action_executions native_dict = self._download_native() nested_step = _step_with_label(native_dict, "nested_workflow") # order_index of subworkflow shifts down from "2" because it has no # inbound inputs assert nested_step["subworkflow"]["steps"]["0"][ "label"] == "renamed_inner_input" assert len(action_executions) == 1 messages = action_executions[0].messages assert len(messages) == 1 message = messages[0] assert message.message_type == RefactorActionExecutionMessageTypeEnum.connection_drop_forced assert message.order_index == 2 assert message.step_label == "nested_workflow" assert message.input_name == "inner_input" assert message.from_step_label == "first_cat" assert message.from_order_index == 1 assert message.output_name == "out_file1" def test_subworkflow_upgrade_connection_output_dropped(self): self.workflow_populator.upload_yaml_workflow(WORKFLOW_NESTED_SIMPLE) nested_stored_workflow = self._recent_stored_workflow(2) actions = [{ "action_type": "update_output_label", "output": { "label": "random_lines", "output_name": "out_file1" }, "output_label": "renamed_output", }] self._refactor(actions, stored_workflow=nested_stored_workflow) actions = [ { "action_type": "upgrade_subworkflow", "step": { "label": "nested_workflow" } }, ] action_executions = self._refactor(actions).action_executions assert len(action_executions) == 1 messages = action_executions[0].messages # it was connected to two inputs on second_cat step assert len(messages) == 2 for message in messages: assert message.message_type == RefactorActionExecutionMessageTypeEnum.connection_drop_forced assert message.order_index == 3 assert message.step_label == "second_cat" assert message.input_name in ["input1", "queries_0|input2"] assert message.from_step_label == "nested_workflow" assert message.from_order_index == 2 assert message.output_name == "workflow_output" def test_subworkflow_upgrade_output_label_dropped(self): self.workflow_populator.upload_yaml_workflow( WORKFLOW_NESTED_RUNTIME_PARAMETER) nested_stored_workflow = self._recent_stored_workflow(2) actions = [{ "action_type": "update_output_label", "output": { "label": "random_lines", "output_name": "out_file1" }, "output_label": "renamed_output", }] self._refactor(actions, stored_workflow=nested_stored_workflow) actions = [ { "action_type": "upgrade_subworkflow", "step": { "label": "nested_workflow" } }, ] action_executions = self._refactor(actions).action_executions assert len(action_executions) == 1 messages = action_executions[0].messages assert len(messages) == 1 message = messages[0] assert message.message_type == RefactorActionExecutionMessageTypeEnum.workflow_output_drop_forced assert message.order_index == 1 assert message.step_label == "nested_workflow" assert message.output_name == "workflow_output" assert message.output_label == "outer_output" def test_upgrade_all_steps(self): self.install_repository("iuc", "compose_text_param", "feb3acba1e0a") # 0.1.0 self.install_repository("iuc", "compose_text_param", "e188c9826e0f") # 0.1.1 self.workflow_populator.upload_yaml_workflow( WORKFLOW_NESTED_WITH_MULTIPLE_VERSIONS_TOOL) nested_stored_workflow = self._recent_stored_workflow(2) assert self._latest_workflow.step_by_label( "tool_update_step").tool_version == "0.1" updated_nested_step = nested_stored_workflow.latest_workflow.step_by_label( "random_lines") assert updated_nested_step.tool_inputs["num_lines"] == "1" self._increment_nested_workflow_version(nested_stored_workflow, num_lines_from="1", num_lines_to="2") self._app.model.session.expunge(nested_stored_workflow) # ensure subworkflow updated properly... nested_stored_workflow = self._recent_stored_workflow(2) assert len(nested_stored_workflow.workflows) == 2 actions = [ { "action_type": "upgrade_all_steps" }, ] action_executions = self._refactor(actions).action_executions assert self._latest_workflow.step_by_label( "tool_update_step").tool_version == "0.2" nested_stored_workflow = self._recent_stored_workflow(2) updated_nested_step = nested_stored_workflow.latest_workflow.step_by_label( "random_lines") assert updated_nested_step.tool_inputs["num_lines"] == "2" assert self._latest_workflow.step_by_label( "compose_text_param").tool_version == '0.1.1' assert self._latest_workflow.step_by_label( "compose_text_param" ).tool_id == 'toolshed.g2.bx.psu.edu/repos/iuc/compose_text_param/compose_text_param/0.1.1' assert len(action_executions) == 1 messages = action_executions[0].messages assert len(messages) == 1 message = messages[0] assert message.message_type == RefactorActionExecutionMessageTypeEnum.connection_drop_forced assert message.order_index == 2 assert message.step_label == "tool_update_step" assert message.output_name == "output" def _download_native(self, workflow=None): workflow = workflow or self._most_recent_stored_workflow workflow_id = self._app.security.encode_id(workflow.id) return self.workflow_populator.download_workflow(workflow_id) @contextlib.contextmanager def _export_for_update(self, workflow): workflow_id = self._app.security.encode_id(workflow.id) with self.workflow_populator.export_for_update( workflow_id) as workflow_object: yield workflow_object def _refactor(self, actions, stored_workflow=None, dry_run=False, style="ga"): user = self._app.model.session.query(User).order_by( User.id.desc()).limit(1).one() mock_trans = MockTrans(self._app, user) app = self._app original_url_for = app.url_for def url_for(*args, **kwd): return '' app.url_for = url_for try: return self._manager.refactor( mock_trans, stored_workflow or self._most_recent_stored_workflow, RefactorRequest(actions=actions, dry_run=dry_run, style=style)) finally: app = url_for = original_url_for def _dry_run(self, actions, stored_workflow=None): # Do a bunch of checks to ensure nothing workflow related was written to the database # or even added to the sa_session. sa_session = self._app.model.session sa_session.flush() sw_update_time = self._model_last_time(StoredWorkflow) assert sw_update_time w_update_time = self._model_last_time(Workflow) assert w_update_time ws_last_id = self._model_last_id(WorkflowStep) assert ws_last_id wsc_last_id = self._model_last_id(WorkflowStepConnection) pja_last_id = self._model_last_id(PostJobAction) pjaa_last_id = self._model_last_id(PostJobActionAssociation) wo_last_id = self._model_last_id(WorkflowOutput) response = self._refactor(actions, stored_workflow=stored_workflow, dry_run=True) sa_session.flush() sa_session.expunge_all() assert sw_update_time == self._model_last_time(StoredWorkflow) assert w_update_time == self._model_last_time(Workflow) assert ws_last_id == self._model_last_id(WorkflowStep) assert wsc_last_id == self._model_last_id(WorkflowStepConnection) assert pja_last_id == self._model_last_id(PostJobAction) assert pjaa_last_id == self._model_last_id(PostJobActionAssociation) assert wo_last_id == self._model_last_id(WorkflowOutput) return response def _model_last_time(self, clazz): obj = self._app.model.session.query(clazz).order_by( clazz.update_time.desc()).limit(1).one() return obj.update_time def _model_last_id(self, clazz): obj = self._app.model.session.query(clazz).order_by( clazz.id.desc()).limit(1).one_or_none() return obj.id if obj else None @property def _manager(self): return self._app.workflow_contents_manager @property def _most_recent_stored_workflow(self): return self._recent_stored_workflow(1) def _recent_stored_workflow(self, n=1): app = self._app return app.model.session.query(StoredWorkflow).order_by( StoredWorkflow.id.desc()).limit(n).all()[-1] @property def _latest_workflow(self): return self._most_recent_stored_workflow.latest_workflow def _increment_nested_workflow_version(self, nested_stored_workflow, num_lines_from="1", num_lines_to="2"): # increment nested workflow from WORKFLOW_NESTED_SIMPLE with # new num_lines in the tool state of the random_lines1 step. with self._export_for_update( nested_stored_workflow) as native_workflow_dict: tool_step = native_workflow_dict["steps"]["1"] assert tool_step["type"] == "tool" assert tool_step["tool_id"] == "random_lines1" tool_state_json = tool_step["tool_state"] tool_state = json.loads(tool_state_json) assert tool_state["num_lines"] == num_lines_from tool_state["num_lines"] = num_lines_to tool_step["tool_state"] = json.dumps(tool_state) def _assert_nested_workflow_num_lines_is(self, native_dict, num_lines): # assuming native_dict is the .ga representation of WORKFLOW_NESTED_SIMPLE, # or some update created with _increment_nested_workflow_version, assert # the nested num_lines step is as specified target_out_step = native_dict["steps"]["2"] assert "subworkflow" in target_out_step target_subworkflow = target_out_step["subworkflow"] target_state_json = target_subworkflow["steps"]["1"]["tool_state"] target_state = json.loads(target_state_json) assert target_state["num_lines"] == num_lines def _load_two_random_lines_wf_with_missing_state(self): wf = self.workflow_populator.load_workflow_from_resource( "test_workflow_two_random_lines") ts = json.loads(wf["steps"]["0"]["tool_state"]) del ts["num_lines"] wf["steps"]["0"]["tool_state"] = json.dumps(ts) wf["steps"]["1"]["tool_state"] = json.dumps(ts) self.workflow_populator.create_workflow(wf, fill_defaults=False) first_step = self._latest_workflow.step_by_label("random1") assert "num_lines" not in first_step.tool_inputs second_step = self._latest_workflow.step_by_label("random2") assert "num_lines" not in second_step.tool_inputs
def setUp(self): super().setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor)
def setUp(self): super(FailJobWhenToolUnavailableTestCase, self).setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) self.workflow_populator = WorkflowPopulator(self.galaxy_interactor) self.history_id = self.dataset_populator.new_history()