示例#1
0
    def __init__(self,
                 fn='depthFirstSearch',
                 prob='PositionSearchProblem',
                 heuristic='nullHeuristic'):
        # Warning: some advanced Python magic is employed below to find the right functions and problems

        # Get the search function from the name and heuristic
        Agent.__init__(self)
        if fn not in dir(search):
            raise AttributeError, fn + ' is not a search function in search.py.'
        func = getattr(search, fn)
        if 'heuristic' not in func.func_code.co_varnames:
            print('[SearchAgent] using function ' + fn)
            self.searchFunction = func
        else:
            if heuristic in globals().keys():
                heur = globals()[heuristic]
            elif heuristic in dir(search):
                heur = getattr(search, heuristic)
            else:
                raise AttributeError, heuristic + ' is not a function in searchAgents.py or search.py.'
            print('[SearchAgent] using function %s and heuristic %s' %
                  (fn, heuristic))
            # Note: this bit of Python trickery combines the search algorithm and the heuristic
            self.searchFunction = lambda x: func(x, heuristic=heur)

        # Get the search problem type from the name
        if prob not in globals().keys() or not prob.endswith('Problem'):
            raise AttributeError, prob + ' is not a search problem type in SearchAgents.py.'
        self.searchType = globals()[prob]
        print('[SearchAgent] using problem type ' + prob)
    def __init__(self, **args):
        """ Initialize the neural network etc."""
        """ DON'T CHANGE THIS PART"""
        Agent.__init__(self, **args)
        self.verbose = False

        self.a_dict = NN_util.TwoWayDict()
        self.a_dict["North"] = 0
        self.a_dict["East"] = 1
        self.a_dict["South"] = 2
        self.a_dict["West"] = 3
        # self.a_dict["Stop"] = 4
        self.num_actions = len(self.a_dict)

        self.prev_state = None
        self.prev_action = None
        self.prev_score = 0.0
        self.exp = []

        """ PLAY AROUND AND CHANGE THIS PART"""
        self.eps = 0.1  # For epsilon greedy action selection.
        self.alpha = 1e-9  # learning rate
        self.gamma = 0.99  # discount factor

        self.layers = [2, 64, 64, 64, self.num_actions]
        self.activation_fns = [NN_util.ReLU, NN_util.ReLU, NN_util.ReLU, NN_util.Linear]
        assert len(self.layers) == len(self.activation_fns) + 1, "Number of layers and activation functions don't match!"

        """ DON'T CHANGE THIS PART"""
        self.NN = init_NN_Glorot(self.layers, self.activation_fns)
        self.TNN = init_NN_Glorot(self.layers, self.activation_fns)
示例#3
0
 def __init__(self, epsilon, alpha):
     Agent.__init__(self)
     self.epsilon = epsilon
     self.cardsWeights={}
     self.cardsFeat={}
     self.discount = 1
     self.alpha = alpha
示例#4
0
 def __init__(self, epsilon, alpha):
     Agent.__init__(self)
     self.epsilon = epsilon
     self.cardsWeights={}
     self.callWeights = {}
     self.discount = 1
     self.alpha = alpha
     self.legalCalls = [True, False]
示例#5
0
    def __init__(self):

        Agent.__init__(self)

        func = getattr(search, 'aStarSearch')

        heur = globals()['manhattanHeuristic']
        # heur = getattr(search, heuristic)
        self.searchFunction = lambda x: func(x, heuristic=heur)

        # Get the search problem type from the name
        self.searchType = globals()[prob]
示例#6
0
 def __init__(self, command_buffer, index, server, display):
     Agent.__init__(self, index)
     self.buffer = command_buffer
     self.lastMove = Directions.STOP
     self.recvDirection = ""
     self.index = index
     self.server = server
     self.keys = []
     self.display = display
     self.state = None
     self.ready = False
     self.life_map = self.server.life_map
     thread.start_new_thread(self.constantReceiver, ())
示例#7
0
 def __init__(self, alpha=1.0, epsilon=0.05, gamma=0.8, numTraining=10):
     """
     Sets options, which can be passed in via the Pacman command line using -a alpha=0.5,...
     alpha    - learning rate
     epsilon  - exploration rate
     gamma    - discount factor
     numTraining - number of training episodes, i.e. no learning after these many episodes
     """
     Agent.__init__(self)
     self.alpha = float(alpha)
     self.epsilon = float(epsilon)
     self.discount = float(gamma)
     self.numTraining = int(numTraining)
示例#8
0
 def __init__(self, alpha=1.0, epsilon=0.05, gamma=0.8, numTraining=10):
     """
     Sets options, which can be passed in via the Pacman command line using -a alpha=0.5,...
     alpha    - learning rate
     epsilon  - exploration rate
     gamma    - discount factor
     numTraining - number of training episodes, i.e. no learning after these many episodes
     """
     Agent.__init__(self)
     self.alpha = float(alpha)
     self.epsilon = float(epsilon)
     self.discount = float(gamma)
     self.numTraining = int(numTraining)
示例#9
0
 def __init__(self):
     Agent.__init__(self)
     self.ghost_fare_level = 2
     self.has_scared_ghosts = False
     self.recompute_delay = 0
     self.visited = []
     self.actions = []
     self.map = []
     self.map_height = 0
     self.map_width = 0
     self.ghost_cost = []
     self.food_heuristic = []
     self.f = dict()
     self.current_target = (1, 1)
示例#10
0
文件: evolution.py 项目: kokoff/alas
def evaluation(best, N, test_runs, output_dir, random=False):
    print 'TEST RUN'
    results = []
    position = []

    for _ in range(test_runs):
        agents = [Agent([-1 for _ in range(IND_SIZE)]) for _ in range(NUM_IND)]

        if random:
            best = Agent([-1] * 32)

        agents[0] = best
        game = Game(agents, N)

        game.play()
        results.append(best.score)
        position.append(
            sorted([a.score for a in agents], reverse=True).index(best.score))

    # Save results
    if not os.path.exists(output_dir):
        os.mkdir(output_dir)

    plt.figure()
    plt.hist(results)
    plt.xlabel('Score')
    plt.ylabel('Frequency')
    plt.savefig(os.path.join(output_dir, 'scores.pdf'))

    plt.figure()
    plt.hist(position)
    plt.xlabel('Rank')
    plt.ylabel('Frequency')
    plt.savefig(os.path.join(output_dir, 'ranks.pdf'))

    with open(os.path.join(output_dir, 'scores.csv'), 'w') as f:
        w = writer(f)
        w.writerow(results)

    with open(os.path.join(output_dir, 'ranks.csv'), 'w') as f:
        w = writer(f)
        w.writerow(position)

    with open(os.path.join(output_dir, 'strategy.txt'), 'w') as f:
        f.write(str(best.strategy))

    return results, position
    def __init__(self, args):
        Agent.__init__(self)

        info("Initializing DQN Agent...")
        tf.reset_default_graph()
        self.session = tf.Session()

        self.params = _init_dqn_params(args)
        self.replay_memory = _init_replay_memory(args)
        self.frame_stack = FrameStack(self.params[FRAME_STACK_SIZE],
                                      self.params[FRAME_WIDTH],
                                      self.params[FRAME_HEIGHT])
        self.dqn = DeepQNetwork(self.params, self.session, 'online')
        self.target_dqn = self.dqn

        if not self.params[NO_TRAIN]:
            self.target_dqn = DeepQNetwork(self.params, self.session, 'target',
                                           False)
            self.target_dqn.assign(self.dqn)

        self.run_id = get_time()

        self.first_move = True
        self.current_state = None
        self.last_state = None
        self.last_action = None
        self.last_score = None
        self.last_reward = None
        self.ep_reward = None
        self.terminal_state = None
        self.won = None
        self.best_q = np.nan
        self.last_100_wins_avg = CappedMovingAverage(100)
        self.last_100_reward_avg = CappedMovingAverage(100)
        self.wins_save_threshold = [0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1]

        info("Done initializing DQN Agent.")
示例#12
0
文件: evolution.py 项目: kokoff/alas
def singleAgentEvolution(CXPB, MUTPB, NGEN, N):
    pop = toolbox.population(n=NUM_IND)
    agents = [Agent(ind) for ind in pop]
    game = Game(agents, N)

    # Evaluate the entire population
    fitnesses = game.play()
    for ind, fit in zip(pop, fitnesses):
        ind.fitness.values = fit

    for g in range(NGEN):
        # Select individual to be evolved
        index = random.randint(0, len(pop) - 1)
        # Select the new generation individuals
        offspring = toolbox.select(pop, len(pop))
        # Clone the selected individuals
        offspring = map(toolbox.clone, offspring)

        # Apply crossover and mutation on the offspring
        child1 = offspring[index]
        for child2 in [
                element for idx, element in enumerate(pop) if idx != index
        ]:
            if random.random() < CXPB:
                toolbox.mate(child1, child2)
                continue

        mutant = offspring[index]
        if random.random() < MUTPB:
            toolbox.mutate(mutant)

        # Set new (evolved) genotype
        agents[index].setStrategy(pop[index])

        # The chosen individual is replaced by the offspring
        pop[index] = offspring[index]

        # Evaluate the individuals
        fitnesses = game.play()
        for ind, fit in zip(pop, fitnesses):
            ind.fitness.values = fit

    # get best agent
    best = agents[0]
    for agent in agents:
        if best.score < agent.score:
            best = agent

    return best
示例#13
0
文件: evolution.py 项目: kokoff/alas
def multiAgentEvolution(CXPB, MUTPB, NGEN, N):
    pop = toolbox.population(n=NUM_IND)
    agents = [Agent(ind) for ind in pop]
    game = Game(agents, N)

    # Evaluate the entire population
    fitnesses = game.play()
    for ind, fit in zip(pop, fitnesses):
        ind.fitness.values = fit

    for g in range(NGEN):
        # Select the next generation individuals
        offspring = toolbox.select(pop, len(pop))
        # Clone the selected individuals
        offspring = map(toolbox.clone, offspring)

        # Apply crossover and mutation on the offspring
        for child1, child2 in zip(offspring[::2], offspring[1::2]):
            if random.random() < CXPB:
                toolbox.mate(child1, child2)

        for mutant in offspring:
            if random.random() < MUTPB:
                toolbox.mutate(mutant)

        # Set new (evolved) genotypes
        for agent, ind in zip(agents, offspring):
            agent.setStrategy(ind)

        # Evaluate the individuals
        fitnesses = game.play()
        for ind, fit in zip(offspring, fitnesses):
            ind.fitness.values = fit

        # The population is entirely replaced by the offspring
        pop[:] = offspring

    # get best agent
    best = agents[0]
    for agent in agents:
        if best.score < agent.score:
            best = agent

    return best
示例#14
0
 def __init__(self,index = 0):
   Agent.__init__(self,index)
   self.policy = None
示例#15
0
文件: evolution.py 项目: kokoff/alas
    with open(os.path.join(output_dir, 'ranks.csv'), 'w') as f:
        w = writer(f)
        w.writerow(position)

    with open(os.path.join(output_dir, 'strategy.txt'), 'w') as f:
        f.write(str(best.strategy))

    return results, position


if __name__ == '__main__':
    CXPB, MUTPB, NGEN, N, TEST_RUNS = 0.5, 0.2, 10000, 1000, 1000

    NUM_IND = 20
    # Baseline agent who never changes society
    best = Agent([-1] * 32)
    evaluation(best, N, TEST_RUNS, 'baseline_20', random=True)

    # All agents evolving at the same time
    best = multiAgentEvolution(CXPB, MUTPB, NGEN, N)
    evaluation(best, N, TEST_RUNS, 'multi_evolution_20')

    # One agent evolving at a time
    best = singleAgentEvolution(CXPB, MUTPB, NGEN, N)
    evaluation(best, N, TEST_RUNS, 'single_evolution_20')

    NUM_IND = 100
    # Baseline agent who never changes society
    best = Agent([-1] * 32)
    evaluation(best, N, TEST_RUNS, 'baseline_100', random=True)
 def __init__(self):
     self.initialPos = None
     Agent.__init__(self)
示例#17
0
 def __init__(self):
     Agent.__init__(self)
示例#18
0
 def __init__(self, **args):
     Agent.__init__(self, **args)
示例#19
0
 def __init__(self, evalFn='scoreEvaluationFunction', depth='2'):
     Agent.__init__(self)
     self.index = 0  # Pacman is always agent index 0
     self.evaluationFunction = lookup(evalFn, globals())
     self.depth = int(depth)
     self.NO_ACTION = "NoAction"
def game_setup(num_agents):
    game = Game()
    agents = [Agent() for i in range(num_agents)]
    ratings = [Rating() for i in range(num_agents)]
    return game, agents, ratings
示例#21
0
 def __init__(self):
     Agent.__init__(self)
     self.next_action = None
示例#22
0
 def __init__(self, action_event, done_event):
     Agent.__init__(self)
     self.next_action = None
     self.action_event = action_event
     self.done_event = done_event
     self.kill = False
 def __init__(self, index=0):
     Agent.__init__(self, index)
     self.lastAction = None
示例#24
0
 def __init__(self,sys1 = Agent(),sys2 = Agent()):
     self.system_1_model = System1Agent()
     self.system_2_model = System2Agent()
     self.count = 0
示例#25
0
 def __init__(self, index=0):
     Agent.__init__(self, index=0)
     self.actionIndex = 0
     self.actions = []
 def __init__(self, index=0):
     Agent.__init__(self, index=0)
示例#27
0
 def __init__(self, evalFn='scoreEvaluationFunction', depth='2'):
     Agent.__init__(self)
     self.index = 0  # Pacman is always agent index 0
     self.evaluationFunction = util.lookup(evalFn, globals())
     self.depth = int(depth)
示例#28
0
 def __init__(self, *args):
   Agent.__init__(self, *args)
   self.lastStop = 1