示例#1
0
async def adx_command(ctx,
                      ticker="",
                      length="14",
                      scalar="100",
                      drift="1",
                      start="",
                      end=""):
    """Displays chart with average directional movement index [Yahoo Finance]"""

    try:

        # Debug
        if cfg.DEBUG:
            print(
                f"!stocks.ta.adx {ticker} {length} {scalar} {drift} {start} {end}"
            )

        # Check for argument
        if ticker == "":
            raise Exception("Stock ticker is required")

        if start == "":
            start = datetime.now() - timedelta(days=365)
        else:
            start = datetime.strptime(start, cfg.DATE_FORMAT)

        if end == "":
            end = datetime.now()
        else:
            end = datetime.strptime(end, cfg.DATE_FORMAT)

        if not length.lstrip("-").isnumeric():
            raise Exception("Number has to be an integer")
        length = float(length)
        if not scalar.lstrip("-").isnumeric():
            raise Exception("Number has to be an integer")
        scalar = float(scalar)
        if not drift.lstrip("-").isnumeric():
            raise Exception("Number has to be an integer")
        drift = float(drift)

        ticker = ticker.upper()
        df_stock = discordbot.helpers.load(ticker, start)
        if df_stock.empty:
            raise Exception("Stock ticker is invalid")

        # Retrieve Data
        df_stock = df_stock.loc[(df_stock.index >= start)
                                & (df_stock.index < end)]

        df_ta = trend_indicators_model.adx("1440min", df_stock, length, scalar,
                                           drift)

        # Output Data
        fig, ax = plt.subplots(2, 1, figsize=plot_autoscale(), dpi=PLOT_DPI)
        ax0 = ax[0]
        ax0.plot(df_stock.index, df_stock["Close"].values, "k", lw=2)
        ax0.set_title(f"Average Directional Movement Index (ADX) on {ticker}")
        ax0.set_xlim(df_stock.index[0], df_stock.index[-1])
        ax0.set_ylabel("Share Price ($)")
        ax0.grid(b=True, which="major", color="#666666", linestyle="-")

        ax1 = ax[1]
        ax1.plot(df_ta.index, df_ta.iloc[:, 0].values, "b", lw=2)
        ax1.plot(df_ta.index, df_ta.iloc[:, 1].values, "g", lw=1)
        ax1.plot(df_ta.index, df_ta.iloc[:, 2].values, "r", lw=1)
        ax1.set_xlim(df_stock.index[0], df_stock.index[-1])
        ax1.axhline(25, linewidth=3, color="k", ls="--")
        ax1.legend(
            [
                f"ADX ({df_ta.columns[0]})",
                f"+DI ({df_ta.columns[1]})",
                f"- DI ({df_ta.columns[2]})",
            ],
            loc="upper left",
        )
        ax1.set_xlabel("Time")
        ax1.grid(b=True, which="major", color="#666666", linestyle="-")

        ax1.set_ylim([0, 100])

        fig.tight_layout()
        plt.gcf().autofmt_xdate()

        plt.savefig("ta_adx.png")
        uploaded_image = gst_imgur.upload_image("ta_adx.png",
                                                title="something")
        image_link = uploaded_image.link
        if cfg.DEBUG:
            print(f"Image URL: {image_link}")
        title = "Stocks: Average-Directional-Movement-Index " + ticker
        embed = discord.Embed(title=title, colour=cfg.COLOR)
        embed.set_author(
            name=cfg.AUTHOR_NAME,
            icon_url=cfg.AUTHOR_ICON_URL,
        )
        embed.set_image(url=image_link)
        os.remove("ta_adx.png")

        await ctx.send(embed=embed)

    except Exception as e:
        embed = discord.Embed(
            title="ERROR Stocks: Average-Directional-Movement-Index",
            colour=cfg.COLOR,
            description=e,
        )
        embed.set_author(
            name=cfg.AUTHOR_NAME,
            icon_url=cfg.AUTHOR_ICON_URL,
        )

        await ctx.send(embed=embed)
def display_adx(
    ohlc: pd.DataFrame,
    length: int = 14,
    scalar: int = 100,
    drift: int = 1,
    s_ticker: str = "",
    export: str = "",
    external_axes: Optional[List[plt.Axes]] = None,
):
    """Plot ADX indicator

    Parameters
    ----------
    ohlc : pd.DataFrame
        Dataframe with OHLC price data
    length : int
        Length of window
    scalar : int
        Scalar variable
    drift : int
        Drift variable
    s_ticker : str
        Ticker
    export : str
        Format to export data
    external_axes : Optional[List[plt.Axes]], optional
        External axes (2 axes are expected in the list), by default None
    """
    df_ta = trend_indicators_model.adx(
        high_values=ohlc["High"],
        low_values=ohlc["Low"],
        close_values=ohlc["Adj Close"],
        length=length,
        scalar=scalar,
        drift=drift,
    )
    plot_data = pd.merge(ohlc, df_ta, how="outer", left_index=True, right_index=True)
    plot_data = reindex_dates(plot_data)

    # This plot has 2 axes
    if not external_axes:
        _, axes = plt.subplots(
            2, 1, sharex=True, figsize=plot_autoscale(), dpi=PLOT_DPI
        )
        ax1, ax2 = axes
    else:
        if len(external_axes) != 2:
            logger.error("Expected list of two axis items.")
            console.print("[red]Expected list of 2 axis items./n[/red]")
            return
        ax1, ax2 = external_axes

    ax1.plot(plot_data.index, plot_data["Close"].values)
    ax1.set_title(f"Average Directional Movement Index (ADX) on {s_ticker}")
    ax1.set_xlim(plot_data.index[0], plot_data.index[-1])
    ax1.set_ylabel("Share Price ($)")
    theme.style_primary_axis(
        ax1,
        data_index=plot_data.index.to_list(),
        tick_labels=plot_data["date"].to_list(),
    )

    ax2.plot(plot_data.index, plot_data[df_ta.columns[0]].values)
    ax2.plot(plot_data.index, plot_data[df_ta.columns[1]].values, color=theme.up_color)
    ax2.plot(
        plot_data.index, plot_data[df_ta.columns[2]].values, color=theme.down_color
    )
    ax2.set_xlim(plot_data.index[0], plot_data.index[-1])
    ax2.axhline(25, ls="--")
    ax2.legend(
        [
            f"ADX ({df_ta.columns[0]})",
            f"+DI ({df_ta.columns[1]})",
            f"-DI ({df_ta.columns[2]})",
        ]
    )
    ax2.set_ylim([0, 100])
    theme.style_primary_axis(
        ax2,
        data_index=plot_data.index.to_list(),
        tick_labels=plot_data["date"].to_list(),
    )

    if external_axes is None:
        theme.visualize_output()

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)).replace("common", "stocks"),
        "adx",
        df_ta,
    )
示例#3
0
def display_adx(
    df_stock: pd.DataFrame,
    length: int = 14,
    scalar: int = 100,
    drift: int = 1,
    s_ticker: str = "",
    export: str = "",
):
    """Plot ADX indicator

    Parameters
    ----------
    df_stock
        Dataframe of prices
    length : int
        Length of window
    scalar : int
        Scalar variable
    drift : int
        Drift variable
    s_ticker : str
        Ticker
    export: str
        Format to export data
    """
    df_ta = trend_indicators_model.adx(
        high_values=df_stock["High"],
        low_values=df_stock["Low"],
        close_values=df_stock["Adj Close"],
        length=length,
        scalar=scalar,
        drift=drift,
    )

    fig, ax = plt.subplots(2, 1, figsize=plot_autoscale(), dpi=PLOT_DPI)
    ax0 = ax[0]
    ax0.plot(df_stock.index, df_stock["Close"].values, "k", lw=2)
    ax0.set_title(f"Average Directional Movement Index (ADX) on {s_ticker}")
    ax0.set_xlim(df_stock.index[0], df_stock.index[-1])
    ax0.set_ylabel("Share Price ($)")
    ax0.grid(b=True, which="major", color="#666666", linestyle="-")

    ax1 = ax[1]
    ax1.plot(df_ta.index, df_ta.iloc[:, 0].values, "b", lw=2)
    ax1.plot(df_ta.index, df_ta.iloc[:, 1].values, "g", lw=1)
    ax1.plot(df_ta.index, df_ta.iloc[:, 2].values, "r", lw=1)
    ax1.set_xlim(df_stock.index[0], df_stock.index[-1])
    ax1.axhline(25, linewidth=3, color="k", ls="--")
    ax1.legend(
        [
            f"ADX ({df_ta.columns[0]})",
            f"+DI ({df_ta.columns[1]})",
            f"- DI ({df_ta.columns[2]})",
        ],
        loc="upper left",
    )
    ax1.set_xlabel("Time")
    ax1.grid(b=True, which="major", color="#666666", linestyle="-")

    ax1.set_ylim([0, 100])

    if gtff.USE_ION:
        plt.ion()
    fig.tight_layout()
    plt.gcf().autofmt_xdate()

    plt.show()
    console.print("")

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)).replace("common", "stocks"),
        "adx",
        df_ta,
    )
示例#4
0
async def adx_command(ctx,
                      ticker="",
                      length="14",
                      scalar="100",
                      drift="1",
                      start="",
                      end=""):
    """Displays chart with average directional movement index [Yahoo Finance]"""

    try:

        # Debug
        if cfg.DEBUG:
            # pylint: disable=logging-too-many-args
            logger.debug(
                "!stocks.ta.adx %s %s %s %s %s",
                ticker,
                length,
                scalar,
                drift,
                start,
                end,
            )

        # Check for argument
        if ticker == "":
            raise Exception("Stock ticker is required")

        if start == "":
            start = datetime.now() - timedelta(days=365)
        else:
            start = datetime.strptime(start, cfg.DATE_FORMAT)

        if end == "":
            end = datetime.now()
        else:
            end = datetime.strptime(end, cfg.DATE_FORMAT)

        if not length.lstrip("-").isnumeric():
            raise Exception("Number has to be an integer")
        length = float(length)
        if not scalar.lstrip("-").isnumeric():
            raise Exception("Number has to be an integer")
        scalar = float(scalar)
        if not drift.lstrip("-").isnumeric():
            raise Exception("Number has to be an integer")
        drift = float(drift)

        ticker = ticker.upper()
        df_stock = discordbot.helpers.load(ticker, start)
        if df_stock.empty:
            raise Exception("Stock ticker is invalid")

        # Retrieve Data
        df_stock = df_stock.loc[(df_stock.index >= start)
                                & (df_stock.index < end)]

        df_ta = trend_indicators_model.adx(
            df_stock["High"],
            df_stock["Low"],
            df_stock["Adj Close"],
            length,
            scalar,
            drift,
        )

        # Output Data
        leg_adx = df_ta.columns[0].replace("_", " ")
        neg_di = df_ta.columns[1].replace("_", " ")
        pos_di = df_ta.columns[2].replace("_", " ")

        fig = make_subplots(
            rows=2,
            cols=1,
            shared_xaxes=True,
            vertical_spacing=0.07,
            row_width=[0.5, 0.5],
        )
        fig.add_trace(
            go.Scatter(
                name=ticker,
                x=df_stock.index,
                y=df_stock["Adj Close"].values,
                line=dict(color="#fdc708", width=2),
                opacity=1,
            ),
            row=1,
            col=1,
        )
        fig.add_trace(
            go.Scatter(
                mode="lines",
                name=f"ADX ({leg_adx})",
                x=df_ta.index,
                y=df_ta.iloc[:, 0].values,
                opacity=1,
                line=dict(width=2),
            ),
            row=2,
            col=1,
        )
        fig.add_trace(
            go.Scatter(
                mode="lines",
                name=f"+DI ({pos_di})",
                x=df_ta.index,
                y=df_ta.iloc[:, 1].values,
                opacity=1,
                line=dict(width=1),
            ),
            row=2,
            col=1,
        )
        fig.add_trace(
            go.Scatter(
                mode="lines",
                name=f"- DI ({neg_di})",
                x=df_ta.index,
                y=df_ta.iloc[:, 2].values,
                opacity=1,
                line=dict(width=1),
            ),
            row=2,
            col=1,
        )
        fig.add_hline(
            y=25,
            fillcolor="grey",
            opacity=1,
            layer="below",
            line_width=3,
            line=dict(color="grey", dash="dash"),
            row=2,
            col=1,
        )
        fig.update_layout(
            margin=dict(l=0, r=20, t=30, b=20),
            template=cfg.PLT_TA_STYLE_TEMPLATE,
            colorway=cfg.PLT_TA_COLORWAY,
            title=f"Average Directional Movement Index (ADX) on {ticker}",
            title_x=0.3,
            yaxis_title="Stock Price ($)",
            yaxis=dict(fixedrange=False, ),
            xaxis=dict(
                rangeslider=dict(visible=False),
                type="date",
            ),
            dragmode="pan",
            legend=dict(orientation="h",
                        yanchor="bottom",
                        y=1.02,
                        xanchor="right",
                        x=1),
        )
        config = dict({"scrollZoom": True})
        imagefile = "ta_adx.png"

        # Check if interactive settings are enabled
        plt_link = ""
        if cfg.INTERACTIVE:
            html_ran = random.randint(69, 69420)
            fig.write_html(f"in/adx_{html_ran}.html", config=config)
            plt_link = f"[Interactive]({cfg.INTERACTIVE_URL}/adx_{html_ran}.html)"

        fig.update_layout(
            width=800,
            height=500,
        )
        fig.write_image(imagefile)

        img = Image.open(imagefile)
        print(img.size)
        im_bg = Image.open(cfg.IMG_BG)
        h = img.height + 240
        w = img.width + 520

        # Paste fig onto background img and autocrop background
        img = img.resize((w, h), Image.ANTIALIAS)
        x1 = int(0.5 * im_bg.size[0]) - int(0.5 * img.size[0])
        y1 = int(0.5 * im_bg.size[1]) - int(0.5 * img.size[1])
        x2 = int(0.5 * im_bg.size[0]) + int(0.5 * img.size[0])
        y2 = int(0.5 * im_bg.size[1]) + int(0.5 * img.size[1])
        img = img.convert("RGB")
        im_bg.paste(img, box=(x1 - 5, y1, x2 - 5, y2))
        im_bg.save(imagefile, "PNG", quality=100)
        image = Image.open(imagefile)
        image = autocrop_image(image, 0)
        image.save(imagefile, "PNG", quality=100)

        image = disnake.File(imagefile)

        print(f"Image {imagefile}")
        if cfg.DEBUG:
            logger.debug("Image: %s", imagefile)
        title = f"Stocks: Average-Directional-Movement-Index {ticker}"
        embed = disnake.Embed(title=title,
                              description=plt_link,
                              colour=cfg.COLOR)
        embed.set_image(url=f"attachment://{imagefile}")
        embed.set_author(
            name=cfg.AUTHOR_NAME,
            icon_url=cfg.AUTHOR_ICON_URL,
        )
        os.remove(imagefile)

        await ctx.send(embed=embed, file=image)

    except Exception as e:
        embed = disnake.Embed(
            title="ERROR Stocks: Average-Directional-Movement-Index",
            colour=cfg.COLOR,
            description=e,
        )
        embed.set_author(
            name=cfg.AUTHOR_NAME,
            icon_url=cfg.AUTHOR_ICON_URL,
        )

        await ctx.send(embed=embed, delete_after=30.0)
示例#5
0
def adx_command(
    ticker="",
    interval: int = 15,
    past_days: int = 0,
    length="14",
    scalar="100",
    drift="1",
    start="",
    end="",
    extended_hours: bool = False,
    heikin_candles: bool = False,
    news: bool = False,
):
    """Displays chart with average directional movement index [Yahoo Finance]"""

    # Debug
    if imps.DEBUG:
        # pylint: disable=logging-too-many-args
        logger.debug(
            "ta adx %s %s %s %s %s %s %s %s %s %s %s",
            ticker,
            interval,
            past_days,
            length,
            scalar,
            drift,
            start,
            end,
            extended_hours,
            heikin_candles,
            news,
        )

    # Check for argument
    if ticker == "":
        raise Exception("Stock ticker is required")

    # Retrieve Data
    df_stock, start, end, bar_start = load_candle.stock_data(
        ticker=ticker,
        interval=interval,
        past_days=past_days,
        extended_hours=extended_hours,
        start=start,
        end=end,
        heikin_candles=heikin_candles,
    )

    if df_stock.empty:
        raise Exception("No Data Found")

    if not length.lstrip("-").isnumeric():
        raise Exception("Number has to be an integer")
    length = float(length)
    if not scalar.lstrip("-").isnumeric():
        raise Exception("Number has to be an integer")
    scalar = float(scalar)
    if not drift.lstrip("-").isnumeric():
        raise Exception("Number has to be an integer")
    drift = float(drift)

    df_ta = df_stock.loc[(df_stock.index >= start) & (df_stock.index < end)]

    if df_ta.empty:
        raise Exception("No Data Found")

    ta_data = trend_indicators_model.adx(
        df_stock["High"],
        df_stock["Low"],
        df_stock["Adj Close"],
        length,
        scalar,
        drift,
    )
    df_ta = df_ta.join(ta_data)

    # Output Data
    if interval != 1440:
        df_ta = df_ta.loc[(df_ta.index >= bar_start) & (df_ta.index < end)]
    df_ta = df_ta.fillna(0.0)

    plot = load_candle.candle_fig(
        df_ta,
        ticker,
        interval,
        extended_hours,
        news,
        bar=bar_start,
        int_bar=interval,
        rows=2,
        cols=1,
        shared_xaxes=True,
        vertical_spacing=0.07,
        row_width=[0.4, 0.6],
        specs=[[{
            "secondary_y": True
        }], [{
            "secondary_y": False
        }]],
    )
    title = f"<b>{plot['plt_title']} Average Directional Movement Index</b>"
    fig = plot["fig"]
    idx = 6 if interval != 1440 else 11

    fig.add_trace(
        go.Scatter(
            name=f"ADX ({length})",
            mode="lines",
            x=df_ta.index,
            y=df_ta.iloc[:, idx].values,
            opacity=1,
            line=dict(width=2),
        ),
        secondary_y=False,
        row=2,
        col=1,
    )
    fig.add_trace(
        go.Scatter(
            name=f"+DI ({length})",
            mode="lines",
            x=df_ta.index,
            y=df_ta.iloc[:, (idx + 1)].values,
            opacity=1,
            line=dict(width=1),
        ),
        secondary_y=False,
        row=2,
        col=1,
    )
    fig.add_trace(
        go.Scatter(
            name=f"-DI ({length})",
            mode="lines",
            x=df_ta.index,
            y=df_ta.iloc[:, (idx + 2)].values,
            opacity=1,
            line=dict(width=1),
        ),
        secondary_y=False,
        row=2,
        col=1,
    )
    fig.add_hline(
        y=25,
        fillcolor="grey",
        opacity=1,
        layer="below",
        line_width=3,
        line=dict(color="grey", dash="dash"),
        row=2,
        col=1,
    )
    fig.update_layout(
        margin=dict(l=0, r=0, t=50, b=20),
        template=imps.PLT_TA_STYLE_TEMPLATE,
        colorway=imps.PLT_TA_COLORWAY,
        title=title,
        title_x=0.01,
        title_font_size=12,
        dragmode="pan",
    )
    imagefile = "ta_adx.png"

    # Check if interactive settings are enabled
    plt_link = ""
    if imps.INTERACTIVE:
        plt_link = imps.inter_chart(fig, imagefile, callback=False)

    fig.update_layout(
        width=800,
        height=500,
    )

    imagefile = imps.image_border(imagefile, fig=fig)

    return {
        "title":
        f"Stocks: Average-Directional-Movement-Index {ticker.upper()}",
        "description": plt_link,
        "imagefile": imagefile,
    }