def get_market_data(self) -> pd.DataFrame:
        """Get all the base market information about given coin. [Source: CoinGecko]

        Returns
        -------
        pandas.DataFrame
            Base market information about coin
            Metric,Value
        """

        market_data = self.coin.get("market_data", {})
        market_columns_denominated = [
            "market_cap",
            "fully_diluted_valuation",
            "total_volume",
            "high_24h",
            "low_24h",
        ]
        denominated_data = create_dictionary_with_prefixes(
            market_columns_denominated, market_data, DENOMINATION)

        market_single_columns = [
            "market_cap_rank",
            "total_supply",
            "max_supply",
            "circulating_supply",
            "price_change_percentage_24h",
            "price_change_percentage_7d",
            "price_change_percentage_30d",
            "price_change_percentage_60d",
            "price_change_percentage_1y",
            "market_cap_change_24h",
        ]
        single_stats = {}
        for col in market_single_columns:
            single_stats[col] = market_data.get(col)
        single_stats.update(denominated_data)

        try:
            single_stats["circulating_supply_to_total_supply_ratio"] = (
                single_stats["circulating_supply"] /
                single_stats["total_supply"])
        except (ZeroDivisionError, TypeError) as e:
            logger.exception(str(e))
            console.print(e)
        df = pd.Series(single_stats).to_frame().reset_index()
        df.columns = ["Metric", "Value"]
        df["Metric"] = df["Metric"].apply(
            lambda x: lambda_replace_underscores_in_column_names(x)
            if isinstance(x, str) else x)
        return df[df["Value"].notna()]
    def _get_base_market_data_info(self):
        """Helper method that fetches all the base market/price information about given coin

        Returns
        -------
        dict
        """
        market_dct = {}
        market_data = self.coin.get("market_data")
        for stat in [
                "total_supply",
                "max_supply",
                "circulating_supply",
                "price_change_percentage_24h",
                "price_change_percentage_7d",
                "price_change_percentage_30d",
        ]:
            market_dct[stat] = market_data.get(stat)
        prices = create_dictionary_with_prefixes(["current_price"],
                                                 market_data, DENOMINATION)
        market_dct.update(prices)
        return market_dct