def shareholders(l_args, s_ticker):
    parser = argparse.ArgumentParser(
        add_help=False,
        prog="shrs",
        description="""Print Major, institutional and mutualfunds shareholders.
        [Source: Yahoo Finance]""",
    )

    try:
        ns_parser = parse_known_args_and_warn(parser, l_args)
        if not ns_parser:
            return

        stock = yf.Ticker(s_ticker)
        pd.set_option("display.max_colwidth", None)

        # Major holders
        print("Major holders")
        df_major_holders = stock.major_holders
        df_major_holders[1] = df_major_holders[1].apply(
            lambda x: x.replace("%", "Percentage"))
        print(df_major_holders.to_string(index=False, header=False))
        print("")

        # Institutional holders
        print("Institutional holders")
        df_institutional_shareholders = stock.institutional_holders
        df_institutional_shareholders.columns = (
            df_institutional_shareholders.columns.str.replace(
                "% Out", "Stake"))
        df_institutional_shareholders[
            "Shares"] = df_institutional_shareholders["Shares"].apply(
                lambda x: long_number_format(x))
        df_institutional_shareholders["Value"] = df_institutional_shareholders[
            "Value"].apply(lambda x: long_number_format(x))
        df_institutional_shareholders["Stake"] = df_institutional_shareholders[
            "Stake"].apply(lambda x: str(f"{100 * x:.2f}") + " %")
        print(df_institutional_shareholders.to_string(index=False))
        print("")

        # Mutualfunds holders
        print("Mutualfunds holders")
        df_mutualfund_shareholders = stock.mutualfund_holders
        df_mutualfund_shareholders.columns = (
            df_mutualfund_shareholders.columns.str.replace("% Out", "Stake"))
        df_mutualfund_shareholders["Shares"] = df_mutualfund_shareholders[
            "Shares"].apply(lambda x: long_number_format(x))
        df_mutualfund_shareholders["Value"] = df_mutualfund_shareholders[
            "Value"].apply(lambda x: long_number_format(x))
        df_mutualfund_shareholders["Stake"] = df_mutualfund_shareholders[
            "Stake"].apply(lambda x: str(f"{100 * x:.2f}") + " %")
        print(df_mutualfund_shareholders.to_string(index=False))

        print("")

    except Exception as e:
        print(e)
        print("")
        return
def get_shareholders(ticker: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
    """Get shareholders from yahoo

    Parameters
    ----------
    ticker : str
        Stock ticker

    Returns
    -------
    pd.DataFrame
        Major holders
    pd.DataFrame
        Institutional holders
    pd.DataFrame
        Mutual Fund holders
    """
    stock = yf.Ticker(ticker)

    # Major holders
    df_major_holders = stock.major_holders
    df_major_holders[1] = df_major_holders[1].apply(
        lambda x: x.replace("%", "Percentage")
    )

    # Institutional holders
    df_institutional_shareholders = stock.institutional_holders
    df_institutional_shareholders.columns = (
        df_institutional_shareholders.columns.str.replace("% Out", "Stake")
    )
    df_institutional_shareholders["Shares"] = df_institutional_shareholders[
        "Shares"
    ].apply(lambda x: long_number_format(x))
    df_institutional_shareholders["Value"] = df_institutional_shareholders[
        "Value"
    ].apply(lambda x: long_number_format(x))
    df_institutional_shareholders["Stake"] = df_institutional_shareholders[
        "Stake"
    ].apply(lambda x: str(f"{100 * x:.2f}") + " %")

    # Mutualfunds holders
    df_mutualfund_shareholders = stock.mutualfund_holders
    df_mutualfund_shareholders.columns = df_mutualfund_shareholders.columns.str.replace(
        "% Out", "Stake"
    )
    df_mutualfund_shareholders["Shares"] = df_mutualfund_shareholders["Shares"].apply(
        lambda x: long_number_format(x)
    )
    df_mutualfund_shareholders["Value"] = df_mutualfund_shareholders["Value"].apply(
        lambda x: long_number_format(x)
    )
    df_mutualfund_shareholders["Stake"] = df_mutualfund_shareholders["Stake"].apply(
        lambda x: str(f"{100 * x:.2f}") + " %"
    )

    return df_major_holders, df_institutional_shareholders, df_mutualfund_shareholders
示例#3
0
def quote(other_args: List[str], ticker: str):
    """Financial Modeling Prep ticker quote

    Parameters
    ----------
    other_args : List[str]
        argparse other args
    ticker : str
        Fundamental analysis ticker symbol
    """

    parser = argparse.ArgumentParser(
        add_help=False,
        prog="quote",
        description="""
            Prints actual information about the company which is, among other things, the day high,
            market cap, open and close price and price-to-equity ratio. The following fields are
            expected: Avg volume, Change, Changes percentage, Day high, Day low, Earnings
            announcement, Eps, Exchange, Market cap, Name, Open, Pe, Previous close, Price, Price
            avg200, Price avg50, Shares outstanding, Symbol, Timestamp, Volume, Year high, and Year
            low. [Source: Financial Modeling Prep]
        """,
    )

    try:
        ns_parser = parse_known_args_and_warn(parser, other_args)
        if not ns_parser:
            return

        df_fa = fa.quote(ticker, cfg.API_KEY_FINANCIALMODELINGPREP)

        clean_df_index(df_fa)

        df_fa.loc["Market cap"][0] = long_number_format(
            df_fa.loc["Market cap"][0])
        df_fa.loc["Shares outstanding"][0] = long_number_format(
            df_fa.loc["Shares outstanding"][0])
        df_fa.loc["Volume"][0] = long_number_format(df_fa.loc["Volume"][0])
        # Check if there is a valid earnings announcement
        if df_fa.loc["Earnings announcement"][0]:
            earning_announcement = datetime.strptime(
                df_fa.loc["Earnings announcement"][0][0:19],
                "%Y-%m-%dT%H:%M:%S")
            df_fa.loc["Earnings announcement"][
                0] = f"{earning_announcement.date()} {earning_announcement.time()}"
        print(df_fa.to_string(header=False))
        print("")

    except Exception as e:
        print(e)
        print("")
        return
示例#4
0
def get_calendar_earnings(ticker: str) -> pd.DataFrame:
    """Get calendar earnings for ticker

    Parameters
    ----------
    ticker : [type]
        Stock ticker

    Returns
    -------
    pd.DataFrame
        Dataframe of calendar earnings
    """
    stock = yf.Ticker(ticker)
    df_calendar = stock.calendar

    if df_calendar.empty:
        return pd.DataFrame()

    df_calendar.iloc[0, :] = df_calendar.iloc[0, :].apply(
        lambda x: x.date().strftime("%m/%d/%Y"))

    df_calendar.iloc[1:, :] = df_calendar.iloc[1:, :].applymap(
        lambda x: long_number_format(x))

    return df_calendar
示例#5
0
def clean_metrics_df(df_fa: pd.DataFrame, num: int, mask: bool = True) -> pd.DataFrame:
    """Clean metrics data frame

    Parameters
    ----------
    df_fa : pd.DataFrame
        Metrics data frame
    num : int
        Number of columns to clean
    mask : bool, optional
        Apply mask, by default True

    Returns
    -------
    pd.DataFrame
        Cleaned metrics data frame
    """

    df_fa = df_fa.iloc[:, 0:num]
    if mask:
        df_fa = df_fa.mask(df_fa.astype(object).eq(num * ["None"])).dropna()
        df_fa = df_fa.mask(df_fa.astype(object).eq(num * ["0"])).dropna()
    df_fa = df_fa.applymap(lambda x: long_number_format(x))
    clean_df_index(df_fa)
    df_fa.columns.name = "Fiscal Date Ending"
    df_fa = df_fa.rename(
        index={
            "Enterprise value over e b i t d a": "Enterprise value over EBITDA",
            "Net debt to e b i t d a": "Net debt to EBITDA",
            "D c f": "DCF",
            "Net income per e b t": "Net income per EBT",
        }
    )

    return df_fa
示例#6
0
def display_defi_protocols(top: int,
                           sortby: str,
                           descend: bool,
                           description: bool,
                           export: str = "") -> None:
    """Display information about listed DeFi protocols, their current TVL and changes to it in the last hour/day/week.
    [Source: https://docs.llama.fi/api]

    Parameters
    ----------
    top: int
        Number of records to display
    sortby: str
        Key by which to sort data
    descend: bool
        Flag to sort data descending
    description: bool
        Flag to display description of protocol
    export : str
        Export dataframe data to csv,json,xlsx file
    """

    df = llama_model.get_defi_protocols()
    df_data = df.copy()

    df = df.sort_values(by=sortby, ascending=descend)

    df["tvl"] = df["tvl"].apply(lambda x: long_number_format(x))

    if not description:
        df.drop(["description", "url"], axis=1, inplace=True)
    else:
        df = df[[
            "name",
            "symbol",
            "category",
            "description",
            "url",
        ]]

    if gtff.USE_TABULATE_DF:
        print(
            tabulate(
                df.head(top),
                headers=df.columns,
                floatfmt=".2f",
                showindex=False,
                tablefmt="fancy_grid",
            ),
            "\n",
        )
    else:
        print(df.to_string, "\n")

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "llama",
        df_data,
    )
示例#7
0
def clean_fundamentals_df(df_fa: pd.DataFrame, num: int) -> pd.DataFrame:
    """Clean fundamentals dataframe

    Parameters
    ----------
    df_fa : pd.DataFrame
        Fundamentals dataframe
    num : int
        Number of data rows to display

    Returns
    ----------
    pd.DataFrame
        Clean dataframe to output
    """
    # pylint: disable=no-member
    df_fa = df_fa.set_index("fiscalDateEnding")
    df_fa = df_fa.head(n=num).T
    df_fa = df_fa.mask(df_fa.astype(object).eq(num * ["None"])).dropna()
    df_fa = df_fa.mask(df_fa.astype(object).eq(num * ["0"])).dropna()
    df_fa = df_fa.applymap(lambda x: long_number_format(x))
    clean_df_index(df_fa)
    df_fa.columns.name = "Fiscal Date Ending"

    return df_fa
def display_whales_transactions(
    min_value: int = 800000,
    top: int = 100,
    sortby: str = "date",
    descend: bool = False,
    show_address: bool = False,
    export: str = "",
) -> None:
    """Display huge value transactions from major blockchains. [Source: https://docs.whale-alert.io/]

    Parameters
    ----------
    min_value: int
        Minimum value of trade to track.
    top: int
        Limit of transactions. Maximum 100
    sortby: str
        Key to sort by.
    descend: str
        Sort in descending order.
    show_address: bool
        Flag to show addresses of transactions.
    export : str
        Export dataframe data to csv,json,xlsx file
    """

    df = whale_alert_model.get_whales_transactions(min_value)
    df_data = df.copy()

    df = df.sort_values(by=sortby, ascending=descend)

    if not show_address:
        df = df.drop(["from_address", "to_address"], axis=1)
    else:
        df = df.drop(["from", "to", "blockchain"], axis=1)

    for col in ["amount_usd", "amount"]:
        df[col] = df[col].apply(lambda x: long_number_format(x))

    if gtff.USE_TABULATE_DF:
        print(
            tabulate(
                df.head(top),
                headers=df.columns,
                floatfmt=".0f",
                showindex=False,
                tablefmt="fancy_grid",
            ),
            "\n",
        )
    else:
        print(df.to_string, "\n")

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "whales",
        df_data,
    )
示例#9
0
def get_quote(ticker) -> pd.DataFrame:
    """Gets ticker quote from FMP"""
    df_fa = fa.quote(ticker, cfg.API_KEY_FINANCIALMODELINGPREP)

    clean_df_index(df_fa)

    df_fa.loc["Market cap"][0] = long_number_format(df_fa.loc["Market cap"][0])
    df_fa.loc["Shares outstanding"][0] = long_number_format(
        df_fa.loc["Shares outstanding"][0])
    df_fa.loc["Volume"][0] = long_number_format(df_fa.loc["Volume"][0])
    # Check if there is a valid earnings announcement
    if df_fa.loc["Earnings announcement"][0]:
        earning_announcement = datetime.strptime(
            df_fa.loc["Earnings announcement"][0][0:19], "%Y-%m-%dT%H:%M:%S")
        df_fa.loc["Earnings announcement"][
            0] = f"{earning_announcement.date()} {earning_announcement.time()}"
    return df_fa
示例#10
0
def display_account_growth(
    kind: str = "total", cumulative: bool = False, top: int = 90, export: str = ""
) -> None:
    """Display terra blockchain account growth history [Source: https://fcd.terra.dev/swagger]

    Parameters
    ----------
    top: int
        Number of records to display
    kind: str
        display total account count or active account count. One from list [active, total]
    cumulative: bool
        Flag to show cumulative or discrete values. For active accounts only discrete value are available.
    export : str
        Export dataframe data to csv,json,xlsx file
    """

    df = terramoney_fcd_model.get_account_growth(cumulative)
    if kind not in ["active", "total"]:
        kind = "total"
    options = {"total": "Total accounts", "active": "Active accounts"}

    opt = options[kind]
    label = "Cumulative" if cumulative and opt == "total" else "Daily"

    fig, ax = plt.subplots(figsize=plot_autoscale(), dpi=PLOT_DPI)

    df = df.sort_values("date", ascending=False).head(top)
    df = df.set_index("date")

    start, end = df.index[-1], df.index[0]
    if cumulative:
        ax.plot(df[opt], label=df[opt])
    else:
        ax.bar(x=df.index, height=df[opt], label=df[opt])

    ax.set_ylabel(f"{opt}")
    ax.set_xlabel("Date")
    dateFmt = mdates.DateFormatter("%m/%d/%Y")
    ax.xaxis.set_major_formatter(dateFmt)

    ax.get_yaxis().set_major_formatter(
        ticker.FuncFormatter(lambda x, _: long_number_format(x))
    )
    fig.tight_layout(pad=8)
    ax.set_title(f"{label} number of {opt.lower()} in period from {start} to {end}")
    ax.grid(alpha=0.5)
    ax.tick_params(axis="x", labelrotation=45)
    if gtff.USE_ION:
        plt.ion()
    plt.show()
    print("")
    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "gacc",
        df,
    )
def calendar_earnings(other_args: List[str], ticker: str):
    """Yahoo Finance ticker calendar earnings

    Parameters
    ----------
    other_args : List[str]
        argparse other args
    ticker : str
        Fundamental analysis ticker symbol
    """

    parser = argparse.ArgumentParser(
        add_help=False,
        prog="cal",
        description="""
            Calendar earnings of the company. Including revenue and earnings estimates.
            [Source: Yahoo Finance]
        """,
    )

    try:
        ns_parser = parse_known_args_and_warn(parser, other_args)
        if not ns_parser:
            return

        stock = yf.Ticker(ticker)
        df_calendar = stock.calendar

        if df_calendar.empty:
            print(f"No earnings calendar information in Yahoo for {ticker}")
            print("")
            return

        df_calendar.iloc[0,
                         0] = df_calendar.iloc[0,
                                               0].date().strftime("%d/%m/%Y")
        df_calendar.iloc[:, 0] = df_calendar.iloc[:, 0].apply(
            lambda x: long_number_format(x))

        print(f"Earnings Date: {df_calendar.iloc[:, 0]['Earnings Date']}")

        avg = df_calendar.iloc[:, 0]["Earnings Average"]
        low = df_calendar.iloc[:, 0]["Earnings Low"]
        high = df_calendar.iloc[:, 0]["Earnings High"]

        print(f"Earnings Estimate Avg: {avg} [{low}, {high}]")
        print(
            f"Revenue Estimate Avg:  {df_calendar.iloc[:, 0]['Revenue Average']} \
                [{df_calendar.iloc[:, 0]['Revenue Low']}, {df_calendar.iloc[:, 0]['Revenue High']}]"
        )
        print("")

    except Exception as e:
        print(e)
        print("")
        return
def clean_fundamentals_df(df_fa: pd.DataFrame, num: int) -> pd.DataFrame:
    # pylint: disable=no-member
    df_fa = df_fa.set_index("fiscalDateEnding")
    df_fa = df_fa.head(n=num).T
    df_fa = df_fa.mask(df_fa.astype(object).eq(num * ["None"])).dropna()
    df_fa = df_fa.mask(df_fa.astype(object).eq(num * ["0"])).dropna()
    df_fa = df_fa.applymap(lambda x: long_number_format(x))
    clean_df_index(df_fa)
    df_fa.columns.name = "Fiscal Date Ending"
    return df_fa
示例#13
0
def get_overview(ticker: str) -> pd.DataFrame:
    """Get alpha vantage company overview

    Parameters
    ----------
    ticker : str
        Stock ticker

    Returns
    -------
    pd.DataFrame
        Dataframe of fundamentals
    """
    # Request OVERVIEW data from Alpha Vantage API
    s_req = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}"
    result = requests.get(s_req, stream=True)

    # If the returned data was successful
    if result.status_code == 200:
        # Parse json data to dataframe
        if "Note" in result.json():
            print(result.json()["Note"], "\n")
            return pd.DataFrame()

        df_fa = pd.json_normalize(result.json())

        # Keep json data sorting in dataframe
        df_fa = df_fa[list(result.json().keys())].T
        df_fa.iloc[5:] = df_fa.iloc[5:].applymap(lambda x: long_number_format(x))
        clean_df_index(df_fa)
        df_fa = df_fa.rename(
            index={
                "E b i t d a": "EBITDA",
                "P e ratio": "PE ratio",
                "P e g ratio": "PEG ratio",
                "E p s": "EPS",
                "Revenue per share t t m": "Revenue per share TTM",
                "Operating margin t t m": "Operating margin TTM",
                "Return on assets t t m": "Return on assets TTM",
                "Return on equity t t m": "Return on equity TTM",
                "Revenue t t m": "Revenue TTM",
                "Gross profit t t m": "Gross profit TTM",
                "Diluted e p s t t m": "Diluted EPS TTM",
                "Quarterly earnings growth y o y": "Quarterly earnings growth YOY",
                "Quarterly revenue growth y o y": "Quarterly revenue growth YOY",
                "Trailing p e": "Trailing PE",
                "Forward p e": "Forward PE",
                "Price to sales ratio t t m": "Price to sales ratio TTM",
                "E v to revenue": "EV to revenue",
                "E v to e b i t d a": "EV to EBITDA",
            }
        )
        return df_fa
    return pd.DataFrame()
def long_number_format_with_type_check(
        x: Union[int, float]) -> Union[str, Any]:
    """Helper which checks if type of x is int or float and it's smaller then 10^18.
    If yes it apply long_num_format
    Parameters
    ----------
    x: int/float
        number to apply long_number_format method
    Returns
    -------
    """
    if isinstance(x, (int, float)) and x < 10**18:
        return long_number_format(x)
    return x
示例#15
0
def get_key_metrics(ticker: str) -> pd.DataFrame:
    """Get key metrics from overview

    Parameters
    ----------
    ticker : str
        Stock ticker

    Returns
    -------
    pd.DataFrame
        Dataframe of key metrics
    """
    # Request OVERVIEW data
    s_req = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}"
    result = requests.get(s_req, stream=True)

    # If the returned data was successful
    if result.status_code == 200:
        df_fa = pd.json_normalize(result.json())
        df_fa = df_fa[list(result.json().keys())].T
        df_fa = df_fa.applymap(lambda x: long_number_format(x))
        clean_df_index(df_fa)
        df_fa = df_fa.rename(
            index={
                "E b i t d a": "EBITDA",
                "P e ratio": "PE ratio",
                "P e g ratio": "PEG ratio",
                "E p s": "EPS",
                "Return on equity t t m": "Return on equity TTM",
                "Price to sales ratio t t m": "Price to sales ratio TTM",
            }
        )
        as_key_metrics = [
            "Market capitalization",
            "EBITDA",
            "EPS",
            "PE ratio",
            "PEG ratio",
            "Price to book ratio",
            "Return on equity TTM",
            "Price to sales ratio TTM",
            "Dividend yield",
            "50 day moving average",
            "Analyst target price",
            "Beta",
        ]
        return df_fa.loc[as_key_metrics]

    return pd.DataFrame()
示例#16
0
def display_trading_pairs(top: int, sortby: str, descend: bool,
                          export: str) -> None:
    """Displays a list of available currency pairs for trading. [Source: Coinbase]

    Parameters
    ----------
    top: int
        Top n of pairs
    sortby: str
        Key to sortby data
    descend: bool
        Sort descending flag
    export : str
        Export dataframe data to csv,json,xlsx file
    """

    df = coinbase_model.get_trading_pairs()
    df_data = df.copy()

    for col in [
            "base_min_size",
            "base_max_size",
            "min_market_funds",
            "max_market_funds",
    ]:
        df[col] = df[col].apply(lambda x: long_number_format(x))

    df = df.sort_values(by=sortby, ascending=descend).head(top)

    if gtff.USE_TABULATE_DF:
        print(
            tabulate(
                df,
                headers=df.columns,
                floatfmt=".2f",
                showindex=False,
                tablefmt="fancy_grid",
            ),
            "\n",
        )
    else:
        print(df.to_string, "\n")

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "pairs",
        df_data,
    )
示例#17
0
def display_historical_tvl(dapps: str = "", export: str = ""):
    """Displays historical TVL of different dApps
    [Source: https://docs.llama.fi/api]

    Parameters
    ----------
    dapps: str
        dApps to search historical TVL. Should be split by , e.g.: anchor,sushiswap,pancakeswap
    export : str
        Export dataframe data to csv,json,xlsx file
    """

    fig, ax = plt.subplots(figsize=plot_autoscale(), dpi=PLOT_DPI)
    available_protocols = read_data_file("defillama_dapps.json")
    if isinstance(available_protocols, dict):
        for dapp in dapps.split(","):
            if dapp in available_protocols.keys():
                df = llama_model.get_defi_protocol(dapp)
                if not df.empty:
                    ax.plot(df, label=available_protocols[dapp])
            else:
                print(f"{dapp} not found\n")

        ax.set_ylabel("Total Value Locked ($)")
        ax.set_xlabel("Time")
        dateFmt = mdates.DateFormatter("%m/%d/%Y")

        ax.xaxis.set_major_formatter(dateFmt)
        ax.get_yaxis().set_major_formatter(
            ticker.FuncFormatter(lambda x, _: long_number_format(x)))
        ax.legend()

        ax.set_title("TVL in dApps")
        ax.grid(alpha=0.5)
        ax.tick_params(axis="x", labelrotation=45)
        fig.tight_layout(pad=2)

        if gtff.USE_ION:
            plt.ion()
        plt.show()
        print("")

        export_data(
            export,
            os.path.dirname(os.path.abspath(__file__)),
            "dtvl",
            None,
        )
示例#18
0
def display_defi_tvl(top: int, export: str = "") -> None:
    """Displays historical values of the total sum of TVLs from all listed protocols.
    [Source: https://docs.llama.fi/api]

    Parameters
    ----------
    top: int
        Number of records to display
    export : str
        Export dataframe data to csv,json,xlsx file
    """

    df = llama_model.get_defi_tvl()
    df_data = df.copy()

    df = df.tail(top)

    fig, ax = plt.subplots(figsize=plot_autoscale(), dpi=PLOT_DPI)

    ax.plot(df["date"], df["totalLiquidityUSD"], "-ok", ms=2)
    ax.set_xlabel("Time")
    ax.set_xlim(df["date"].iloc[0], df["date"].iloc[-1])
    dateFmt = mdates.DateFormatter("%m/%d/%Y")

    ax.xaxis.set_major_formatter(dateFmt)
    ax.tick_params(axis="x", labelrotation=45)
    ax.set_ylabel("Total Value Locked ($)")
    ax.grid(b=True, which="major", color="#666666", linestyle="-")
    ax.minorticks_on()
    ax.grid(b=True, which="minor", color="#999999", linestyle="-", alpha=0.2)
    ax.set_title("Total Value Locked in DeFi")
    ax.get_yaxis().set_major_formatter(
        ticker.FuncFormatter(lambda x, _: long_number_format(x)))
    fig.tight_layout(pad=2)

    if gtff.USE_ION:
        plt.ion()
    plt.show()
    console.print("")

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "stvl",
        df_data,
    )
示例#19
0
def display_terra_asset_history(asset: str = "",
                                address: str = "",
                                export: str = "") -> None:
    """Displays the 30-day history of specified asset in terra address
    [Source: https://docs.llama.fi/api]

    Parameters
    ----------
    asset : str
        Terra asset {ust,luna,sdt}
    address : str
        Terra address. Valid terra addresses start with 'terra'
    export : str
        Export dataframe data to csv,json,xlsx file
    """

    df = terraengineer_model.get_history_asset_from_terra_address(
        address=address, asset=asset)

    fig, ax = plt.subplots(figsize=plot_autoscale(), dpi=PLOT_DPI)

    ax.plot(df["x"], df["y"])
    ax.set_xlabel("Time")
    ax.tick_params(axis="x", labelrotation=45)
    ax.set_xlim(df["x"].iloc[0], df["x"].iloc[-1])
    dateFmt = mdates.DateFormatter("%m/%d/%Y")
    fig.tight_layout(pad=4)
    ax.xaxis.set_major_formatter(dateFmt)
    ax.set_ylabel(f"{asset.upper()} Amount")
    ax.grid(alpha=0.5)
    ax.set_title(f"{asset.upper()} Amount in Address {address}")
    ax.get_yaxis().set_major_formatter(
        ticker.FuncFormatter(lambda x, _: long_number_format(x)))

    if gtff.USE_ION:
        plt.ion()
    plt.show()
    print("")

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "aterra",
        df,
    )
示例#20
0
def display_btc_confirmed_transactions(since: int, until: int,
                                       export: str) -> None:
    """Returns BTC confirmed transactions [Source: https://api.blockchain.info/]

    Parameters
    ----------
    since : int
        Initial date timestamp (e.g., 1_609_459_200)
    until : int
        End date timestamp (e.g., 1_641_588_030)
    export : str
        Export dataframe data to csv,json,xlsx file
    """

    df = blockchain_model.get_btc_confirmed_transactions()
    df = df[(df["x"] > datetime.fromtimestamp(since))
            & (df["x"] < datetime.fromtimestamp(until))]

    fig, ax = plt.subplots(figsize=plot_autoscale(), dpi=PLOT_DPI)

    ax.plot(df["x"], df["y"], lw=0.8)
    ax.set_xlabel("Time")
    ax.tick_params(axis="x", labelrotation=45)
    ax.set_xlim(df["x"].iloc[0], df["x"].iloc[-1])
    dateFmt = mdates.DateFormatter("%m/%d/%Y")
    fig.tight_layout(pad=4)
    ax.xaxis.set_major_formatter(dateFmt)
    ax.set_ylabel("Transactions")
    ax.grid(alpha=0.5)
    ax.set_title("BTC Confirmed Transactions")
    ax.get_yaxis().set_major_formatter(
        ticker.FuncFormatter(lambda x, _: long_number_format(x)))

    if gtff.USE_ION:
        plt.ion()
    plt.show()
    print("")

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "btcct",
        df,
    )
def calendar_earnings(l_args, s_ticker):
    parser = argparse.ArgumentParser(
        prog="cal",
        description="""
            Calendar earnings of the company. Including revenue and earnings estimates.
            [Source: Yahoo Finance]
        """,
    )

    try:
        parse_known_args_and_warn(parser, l_args)

        stock = yf.Ticker(s_ticker)
        df_calendar = stock.calendar

        if df_calendar.empty:
            print(f"No earnings calendar information in Yahoo for {s_ticker}")
            print("")
            return

        df_calendar.iloc[0,
                         0] = df_calendar.iloc[0,
                                               0].date().strftime("%d/%m/%Y")
        df_calendar.iloc[:, 0] = df_calendar.iloc[:, 0].apply(
            lambda x: long_number_format(x))

        print(f"Earnings Date: {df_calendar.iloc[:, 0]['Earnings Date']}")

        avg = df_calendar.iloc[:, 0]["Earnings Average"]
        low = df_calendar.iloc[:, 0]["Earnings Low"]
        high = df_calendar.iloc[:, 0]["Earnings High"]

        print(f"Earnings Estimate Avg: {avg} [{low}, {high}]")
        print(
            f"Revenue Estimate Avg:  {df_calendar.iloc[:, 0]['Revenue Average']} \
                [{df_calendar.iloc[:, 0]['Revenue Low']}, {df_calendar.iloc[:, 0]['Revenue High']}]"
        )
        print("")

    except Exception as e:
        print(e)
        print("")
        return
示例#22
0
def get_info(ticker: str) -> pd.DataFrame:
    """Gets ticker info

    Parameters
    ----------
    ticker : str
        Stock ticker

    Returns
    -------
    pd.DataFrame
        DataFrame of yfinance information
    """
    stock = yf.Ticker(ticker)
    df_info = pd.DataFrame(stock.info.items(), columns=["Metric", "Value"])
    df_info = df_info.set_index("Metric")

    clean_df_index(df_info)

    if "Last split date" in df_info.index and df_info.loc[
            "Last split date"].values[0]:
        df_info.loc["Last split date"].values[0] = datetime.fromtimestamp(
            df_info.loc["Last split date"].values[0]).strftime("%d/%m/%Y")

    df_info = df_info.mask(df_info["Value"].astype(str).eq("[]")).dropna()
    df_info[df_info.index != "Zip"] = df_info[df_info.index != "Zip"].applymap(
        lambda x: long_number_format(x))

    df_info = df_info.rename(
        index={
            "Address1":
            "Address",
            "Average daily volume10 day":
            "Average daily volume 10 day",
            "Average volume10days":
            "Average volume 10 days",
            "Price to sales trailing12 months":
            "Price to sales trailing 12 months",
        })
    df_info.index = df_info.index.str.replace("eps", "EPS")
    df_info.index = df_info.index.str.replace("p e", "PE")
    df_info.index = df_info.index.str.replace("Peg", "PEG")
    return df_info
def clean_metrics_df(df_fa: pd.DataFrame,
                     num: int,
                     mask: bool = True) -> pd.DataFrame:
    df_fa = df_fa.iloc[:, 0:num]
    if mask:
        df_fa = df_fa.mask(df_fa.astype(object).eq(num * ["None"])).dropna()
        df_fa = df_fa.mask(df_fa.astype(object).eq(num * ["0"])).dropna()
    df_fa = df_fa.applymap(lambda x: long_number_format(x))
    clean_df_index(df_fa)
    df_fa.columns.name = "Fiscal Date Ending"
    df_fa = df_fa.rename(
        index={
            "Enterprise value over e b i t d a":
            "Enterprise value over EBITDA",
            "Net debt to e b i t d a": "Net debt to EBITDA",
            "D c f": "DCF",
            "Net income per e b t": "Net income per EBT",
        })
    return df_fa
示例#24
0
def display_grouped_defi_protocols(num: int = 50, export: str = "") -> None:
    """Display top dApps (in terms of TVL) grouped by chain.
    [Source: https://docs.llama.fi/api]

    Parameters
    ----------
    num: int
        Number of top dApps to display
    export : str
        Export dataframe data to csv,json,xlsx file
    """
    df = llama_model.get_defi_protocols()
    fig, ax = plt.subplots(figsize=plot_autoscale(), dpi=PLOT_DPI)

    df = df.sort_values("tvl", ascending=False).head(num)
    df = df.set_index("name")

    chains = df.groupby("chain").size().index.values.tolist()

    for chain in chains:
        chain_filter = df.loc[df.chain == chain]
        ax.bar(x=chain_filter.index, height=chain_filter.tvl, label=chain)

    ax.set_ylabel("Total Value Locked ($)")
    ax.set_xlabel("dApp name")
    ax.get_yaxis().set_major_formatter(
        ticker.FuncFormatter(lambda x, _: long_number_format(x)))
    fig.tight_layout(pad=8)
    ax.legend(ncol=2)
    ax.set_title(f"Top {num} dApp TVL grouped by chain")
    ax.grid(alpha=0.5)
    ax.tick_params(axis="x", labelrotation=90)
    if gtff.USE_ION:
        plt.ion()
    plt.show()
    print("")
    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "gdapps",
        df,
    )
示例#25
0
def display_anchor_yield_reserve(export: str = "") -> None:
    """Displays the 30-day history of the Anchor Yield Reserve.
    [Source: https://docs.llama.fi/api]

    Parameters
    ----------
    export : str
        Export dataframe data to csv,json,xlsx file
    """

    df = terraengineer_model.get_history_asset_from_terra_address(
        address="terra1tmnqgvg567ypvsvk6rwsga3srp7e3lg6u0elp8")

    fig, ax = plt.subplots(figsize=plot_autoscale(), dpi=PLOT_DPI)

    ax.plot(df["x"], df["y"])
    ax.set_xlabel("Time")
    ax.tick_params(axis="x", labelrotation=45)
    ax.set_xlim(df["x"].iloc[0], df["x"].iloc[-1])
    dateFmt = mdates.DateFormatter("%m/%d/%Y")
    fig.tight_layout(pad=4)
    ax.xaxis.set_major_formatter(dateFmt)
    ax.set_ylabel("UST Amount")
    ax.grid(alpha=0.5)
    ax.set_title("Anchor UST Yield Reserve")
    ax.get_yaxis().set_major_formatter(
        ticker.FuncFormatter(lambda x, _: long_number_format(x)))

    if gtff.USE_ION:
        plt.ion()
    plt.show()
    print("")

    export_data(
        export,
        os.path.dirname(os.path.abspath(__file__)),
        "ayr",
        df,
    )
示例#26
0
def get_balance_sheet(
    ticker: str, number: int, quarterly: bool = False
) -> pd.DataFrame:
    """Get balance sheets for company

    Parameters
    ----------
    ticker : str
        Stock ticker
    number : int
        Number of past to get
    quarterly : bool, optional
        Flag to get quarterly instead of annual, by default False

    Returns
    -------
    pd.DataFrame
        Dataframe of income statements
    """
    url = f"https://www.alphavantage.co/query?function=BALANCE_SHEET&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}"
    r = requests.get(url)
    if r.status_code == 200:
        statements = r.json()
        df_fa = pd.DataFrame()
        if quarterly:
            if "quarterlyReports" in statements:
                df_fa = pd.DataFrame(statements["quarterlyReports"])
        else:
            if "annualReports" in statements:
                df_fa = pd.DataFrame(statements["annualReports"])

        if df_fa.empty:
            return pd.DataFrame()

        df_fa = df_fa.set_index("fiscalDateEnding")
        df_fa = df_fa.head(number)
        df_fa = df_fa.applymap(lambda x: long_number_format(x))
        return df_fa[::-1].T
    return pd.DataFrame()
def overview(other_args: List[str], ticker: str):
    """Alpha Vantage stock ticker overview

    Parameters
    ----------
    other_args : List[str]
        argparse other args
    ticker : str
        Fundamental analysis ticker symbol
    """

    parser = argparse.ArgumentParser(
        add_help=False,
        prog="overview",
        description="""
            Prints an overview about the company. The following fields are expected:
            Symbol, Asset type, Name, Description, Exchange, Currency, Country, Sector, Industry,
            Address, Full time employees, Fiscal year end, Latest quarter, Market capitalization,
            EBITDA, PE ratio, PEG ratio, Book value, Dividend per share, Dividend yield, EPS,
            Revenue per share TTM, Profit margin, Operating margin TTM, Return on assets TTM,
            Return on equity TTM, Revenue TTM, Gross profit TTM, Diluted EPS TTM, Quarterly
            earnings growth YOY, Quarterly revenue growth YOY, Analyst target price, Trailing PE,
            Forward PE, Price to sales ratio TTM, Price to book ratio, EV to revenue, EV to EBITDA,
            Beta, 52 week high, 52 week low, 50 day moving average, 200 day moving average, Shares
            outstanding, Shares float, Shares short, Shares short prior month, Short ratio, Short
            percent outstanding, Short percent float, Percent insiders, Percent institutions,
            Forward annual dividend rate, Forward annual dividend yield, Payout ratio, Dividend
            date, Ex dividend date, Last split factor, and Last split date. [Source: Alpha Vantage]
        """,
    )

    try:
        ns_parser = parse_known_args_and_warn(parser, other_args)
        if not ns_parser:
            return

        # Request OVERVIEW data from Alpha Vantage API
        s_req = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}"
        result = requests.get(s_req, stream=True)

        # If the returned data was successful
        if result.status_code == 200:
            # Parse json data to dataframe
            df_fa = pd.json_normalize(result.json())
            # Keep json data sorting in dataframe
            df_fa = df_fa[list(result.json().keys())].T
            df_fa = df_fa.applymap(lambda x: long_number_format(x))
            clean_df_index(df_fa)
            df_fa = df_fa.rename(
                index={
                    "E b i t d a": "EBITDA",
                    "P e ratio": "PE ratio",
                    "P e g ratio": "PEG ratio",
                    "E p s": "EPS",
                    "Revenue per share t t m": "Revenue per share TTM",
                    "Operating margin t t m": "Operating margin TTM",
                    "Return on assets t t m": "Return on assets TTM",
                    "Return on equity t t m": "Return on equity TTM",
                    "Revenue t t m": "Revenue TTM",
                    "Gross profit t t m": "Gross profit TTM",
                    "Diluted e p s t t m": "Diluted EPS TTM",
                    "Quarterly earnings growth y o y":
                    "Quarterly earnings growth YOY",
                    "Quarterly revenue growth y o y":
                    "Quarterly revenue growth YOY",
                    "Trailing p e": "Trailing PE",
                    "Forward p e": "Forward PE",
                    "Price to sales ratio t t m": "Price to sales ratio TTM",
                    "E v to revenue": "EV to revenue",
                    "E v to e b i t d a": "EV to EBITDA",
                })

            pd.set_option("display.max_colwidth", None)

            print(df_fa.drop(index=["Description"]).to_string(header=False))
            print(f"Description: {df_fa.loc['Description'][0]}")
            print("")
        else:
            print(f"Error: {result.status_code}")
        print("")

    except Exception as e:
        print(e)
        print("")
        return
def key(other_args: List[str], ticker: str):
    """Alpha Vantage key metrics

    Parameters
    ----------
    other_args : List[str]
        argparse other args
    ticker : str
        Fundamental analysis ticker symbol
    """

    parser = argparse.ArgumentParser(
        add_help=False,
        prog="key",
        description="""
            Gives main key metrics about the company (it's a subset of the Overview data from Alpha
            Vantage API). The following fields are expected: Market capitalization, EBITDA, EPS, PE
            ratio, PEG ratio, Price to book ratio, Return on equity TTM, Payout ratio, Price to
            sales ratio TTM, Dividend yield, 50 day moving average, Analyst target price, Beta
            [Source: Alpha Vantage API]
        """,
    )

    try:
        ns_parser = parse_known_args_and_warn(parser, other_args)
        if not ns_parser:
            return

        # Request OVERVIEW data
        s_req = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}"
        result = requests.get(s_req, stream=True)

        # If the returned data was successful
        if result.status_code == 200:
            df_fa = pd.json_normalize(result.json())
            df_fa = df_fa[list(result.json().keys())].T
            df_fa = df_fa.applymap(lambda x: long_number_format(x))
            clean_df_index(df_fa)
            df_fa = df_fa.rename(
                index={
                    "E b i t d a": "EBITDA",
                    "P e ratio": "PE ratio",
                    "P e g ratio": "PEG ratio",
                    "E p s": "EPS",
                    "Return on equity t t m": "Return on equity TTM",
                    "Price to sales ratio t t m": "Price to sales ratio TTM",
                })
            as_key_metrics = [
                "Market capitalization",
                "EBITDA",
                "EPS",
                "PE ratio",
                "PEG ratio",
                "Price to book ratio",
                "Return on equity TTM",
                "Payout ratio",
                "Price to sales ratio TTM",
                "Dividend yield",
                "50 day moving average",
                "Analyst target price",
                "Beta",
            ]
            print(df_fa.loc[as_key_metrics].to_string(header=False))
            print("")
        else:
            print(f"Error: {result.status_code}")

        print("")

    except Exception as e:
        print(e)
        print("")
        return
示例#29
0
def short_interest(l_args, s_ticker, s_start):
    parser = argparse.ArgumentParser(
        prog="short",
        description="""
            Plots the short interest of a stock. This corresponds to the number of shares that
            have been sold short but have not yet been covered or closed out. Either NASDAQ or NYSE [Source: Quandl]
        """,
    )

    parser.add_argument(
        "-n",
        "--nyse",
        action="store_true",
        default=False,
        dest="b_nyse",
        help="data from NYSE flag.",
    )
    parser.add_argument(
        "-d",
        "--days",
        action="store",
        dest="n_days",
        type=check_positive,
        default=10,
        help="number of latest days to print data.",
    )

    try:
        ns_parser = parse_known_args_and_warn(parser, l_args)

        quandl.ApiConfig.api_key = cfg.API_KEY_QUANDL

        if ns_parser.b_nyse:
            df_short_interest = quandl.get(f"FINRA/FNYX_{s_ticker}")
        else:
            df_short_interest = quandl.get(f"FINRA/FNSQ_{s_ticker}")

        df_short_interest = df_short_interest[s_start:]
        df_short_interest.columns = [
            "".join(
                " " + char if char.isupper() else char.strip() for char in idx
            ).strip()
            for idx in df_short_interest.columns.tolist()
        ]
        df_short_interest["% of Volume Shorted"] = round(
            100 * df_short_interest["Short Volume"] / df_short_interest["Total Volume"],
            2,
        )

        _, ax = plt.subplots()
        ax.bar(
            df_short_interest.index, df_short_interest["Short Volume"], 0.3, color="r"
        )
        ax.bar(
            df_short_interest.index,
            df_short_interest["Total Volume"] - df_short_interest["Short Volume"],
            0.3,
            bottom=df_short_interest["Short Volume"],
            color="b",
        )
        ax.set_ylabel("Shares")
        ax.set_xlabel("Date")

        if s_start:
            ax.set_title(
                f"{('NASDAQ', 'NYSE')[ns_parser.b_nyse]} Short Interest on {s_ticker} from {s_start.date()}"
            )
        else:
            ax.set_title(
                f"{('NASDAQ', 'NYSE')[ns_parser.b_nyse]} Short Interest on {s_ticker}"
            )

        ax.legend(labels=["Short Volume", "Total Volume"])
        ax.tick_params(axis="both", which="major")
        ax.yaxis.set_major_formatter(ticker.EngFormatter())
        ax_twin = ax.twinx()
        ax_twin.tick_params(axis="y", colors="green")
        ax_twin.set_ylabel("Percentage of Volume Shorted", color="green")
        ax_twin.plot(
            df_short_interest.index,
            df_short_interest["% of Volume Shorted"],
            color="green",
        )
        ax_twin.tick_params(axis="y", which="major", color="green")
        ax_twin.yaxis.set_major_formatter(ticker.FormatStrFormatter("%.0f%%"))
        plt.xlim([df_short_interest.index[0], df_short_interest.index[-1]])

        df_short_interest["% of Volume Shorted"] = df_short_interest[
            "% of Volume Shorted"
        ].apply(lambda x: f"{x/100:.2%}")
        df_short_interest = df_short_interest.applymap(
            lambda x: long_number_format(x)
        ).sort_index(ascending=False)

        pd.set_option("display.max_colwidth", 70)
        print(df_short_interest.head(n=ns_parser.n_days).to_string())
        print("")

        plt.show()

    except Exception as e:
        print(e)
        print("")
        return
def info(l_args, s_ticker):
    parser = argparse.ArgumentParser(
        prog="info",
        description="""
            Print information about the company. The following fields are expected:
            Zip, Sector, Full time employees, Long business summary, City, Phone, State, Country,
            Website, Max age, Address, Industry, Previous close, Regular market open, Two hundred
            day average, Payout ratio, Regular market day high, Average daily volume 10 day,
            Regular market previous close, Fifty day average, Open, Average volume 10 days, Beta,
            Regular market day low, Price hint, Currency, Trailing PE, Regular market volume,
            Market cap, Average volume, Price to sales trailing 12 months, Day low, Ask, Ask size,
            Volume, Fifty two week high, Forward PE, Fifty two week low, Bid, Tradeable, Bid size,
            Day high, Exchange, Short name, Long name, Exchange timezone name, Exchange timezone
            short name, Is esg populated, Gmt off set milliseconds, Quote type, Symbol, Message
            board id, Market, Enterprise to revenue, Profit margins, Enterprise to ebitda, 52 week
            change, Forward EPS, Shares outstanding, Book value, Shares short, Shares percent
            shares out, Last fiscal year end, Held percent institutions, Net income to common,
            Trailing EPS, Sand p52 week change, Price to book, Held percent insiders, Next fiscal
            year end, Most recent quarter, Short ratio, Shares short previous month date, Float
            shares, Enterprise value, Last split date, Last split factor, Earnings quarterly growth,
            Date short interest, PEG ratio, Short percent of float, Shares short prior month,
            Regular market price, Logo_url. [Source: Yahoo Finance]
        """,
    )

    try:
        parse_known_args_and_warn(parser, l_args)

        stock = yf.Ticker(s_ticker)
        df_info = pd.DataFrame(stock.info.items(), columns=["Metric", "Value"])
        df_info = df_info.set_index("Metric")

        clean_df_index(df_info)

        if ("Last split date" in df_info.index
                and df_info.loc["Last split date"].values[0]):
            df_info.loc["Last split date"].values[0] = datetime.fromtimestamp(
                df_info.loc["Last split date"].values[0]).strftime("%d/%m/%Y")

        df_info = df_info.mask(df_info["Value"].astype(str).eq("[]")).dropna()
        df_info = df_info.applymap(lambda x: long_number_format(x))

        df_info = df_info.rename(
            index={
                "Address1":
                "Address",
                "Average daily volume10 day":
                "Average daily volume 10 day",
                "Average volume10days":
                "Average volume 10 days",
                "Price to sales trailing12 months":
                "Price to sales trailing 12 months",
            })
        df_info.index = df_info.index.str.replace("eps", "EPS")
        df_info.index = df_info.index.str.replace("p e", "PE")
        df_info.index = df_info.index.str.replace("Peg", "PEG")

        pd.set_option("display.max_colwidth", -1)

        if "Long business summary" in df_info.index:
            print(
                df_info.drop(index=["Long business summary"]).to_string(
                    header=False))
            print("")
            print(df_info.loc["Long business summary"].values[0])
            print("")
        else:
            print(df_info.to_string(header=False))
            print("")

    except Exception as e:
        print(e)
        print("")
        return