示例#1
0
    def sample_coord(self, map_coord, random_state=0):
        """Apply the energy dispersion corrections on the coordinates of a set of simulated events.

        Parameters
        ----------
        map_coord : `~gammapy.maps.MapCoord` object.
            Sequence of coordinates and energies of sampled events.
        random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`}
            Defines random number generator initialisation.
            Passed to `~gammapy.utils.random.get_random_state`.

        Returns
        -------
        `~gammapy.maps.MapCoord`.
            Sequence of Edisp-corrected coordinates of the input map_coord map.
        """
        random_state = get_random_state(random_state)
        migra_axis = self.edisp_map.geom.get_axis_by_name("migra")

        coord = {
            "skycoord": map_coord.skycoord.reshape(-1, 1),
            "energy_true": map_coord["energy_true"].reshape(-1, 1),
            "migra": migra_axis.center,
        }

        pdf_edisp = self.edisp_map.interp_by_coord(coord)

        sample_edisp = InverseCDFSampler(pdf_edisp, axis=1, random_state=random_state)
        pix_edisp = sample_edisp.sample_axis()
        migra = migra_axis.pix_to_coord(pix_edisp)

        energy_reco = map_coord["energy_true"] * migra

        return MapCoord.create({"skycoord": map_coord.skycoord, "energy": energy_reco})
示例#2
0
def test_axis_sampling():
    n_sampled = 1000
    x = np.linspace(-2, 2, n_sampled)

    a, b = -1, 1
    pdf_uniform = uniform_dist(x, a=a, b=b)

    mu, sigma = 0, 0.1
    pdf_gauss = gauss_dist(x=x, mu=mu, sigma=sigma)

    pdf = np.vstack([pdf_gauss, pdf_uniform])
    sampler = InverseCDFSampler(pdf, random_state=0, axis=1)

    idx = sampler.sample_axis()
    x_sampled = np.interp(idx, np.arange(n_sampled), x)

    assert_allclose(x_sampled, [0.01042147, 0.43061014], rtol=1e-5)
示例#3
0
    def sample_coord(self, map_coord, random_state=0):
        """Apply PSF corrections on the coordinates of a set of simulated events.

        Parameters
        ----------
        map_coord : `~gammapy.maps.MapCoord` object.
            Sequence of coordinates and energies of sampled events.
        random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`}
            Defines random number generator initialisation.
            Passed to `~gammapy.utils.random.get_random_state`.

        Returns
        -------
        corr_coord : `~gammapy.maps.MapCoord` object.
            Sequence of PSF-corrected coordinates of the input map_coord map.
        """

        random_state = get_random_state(random_state)
        rad_axis = self.psf_map.geom.axes["rad"]

        coord = {
            "skycoord": map_coord.skycoord.reshape(-1, 1),
            "energy_true": map_coord["energy_true"].reshape(-1, 1),
            "rad": rad_axis.center,
        }

        pdf = (
            self.psf_map.interp_by_coord(coord)
            * rad_axis.center.value
            * rad_axis.bin_width.value
        )

        sample_pdf = InverseCDFSampler(pdf, axis=1, random_state=random_state)
        pix_coord = sample_pdf.sample_axis()
        separation = rad_axis.pix_to_coord(pix_coord)

        position_angle = random_state.uniform(360, size=len(map_coord.lon)) * u.deg

        event_positions = map_coord.skycoord.directional_offset_by(
            position_angle=position_angle, separation=separation
        )
        return MapCoord.create(
            {"skycoord": event_positions, "energy_true": map_coord["energy_true"]}
        )