示例#1
0
    def asimov_mu_ts0(self,ts):
        """Return the value of the signal strength parameter for which
        the TS (-2*lnL) for discovery is equal to the given value."""

        smin = 1E-3
        smax = 1E3

        while self.asimov_ts0_signal(smax) < ts: smax *= 10
        while self.asimov_ts0_signal(smin) > ts: smin *= 0.1

        mu = find_fn_root(self.asimov_ts0_signal,smin,smax,ts)
        mu_err = np.sqrt(mu**2/ts)

        return (mu,mu_err)
示例#2
0
    nexcess = ns+nb-mub
    nexcess[nexcess<=0] = 0

    ts_mc = -2*(poisson_lnl(ns+nb,mub) - poisson_lnl(ns+nb,ns+nb))
    ts_asimov = fn_qmu(mus+mub,mus+mub,mub)
    
    ul_mc = np.zeros(ntrial)

    alpha = 0.05
    dlnl = pval_to_sigma(alpha)**2

    for i in range(ntrial):

        xroot = find_fn_root(lambda t: fn_qmu((ns+nb)[:,i],
                                              (mub+nexcess)[:,i],
                                              (mub+nexcess)[:,i]+t),0,100,dlnl)
        ul_mc[i] = nexcess[i]+xroot


    sigma_mu_fn = lambda t: np.sqrt(t**2/fn_qmu(mub,mub,mub+t))

    ul_asimov_qmu = find_fn_root(lambda t: fn_qmu(mub,mub,mub+t),0,100,dlnl)
    sigma = np.sqrt(ul_asimov_qmu**2/dlnl)

    ul_asimov = 1.64*sigma
    ul_asimov_upper = (1.64+1)*sigma
    ul_asimov_lower = (1.64-1)*sigma


    print 'SIGMA ', sigma