def main(self): import os import tensorflow as tf from gan.load_data import load_dSprites from gan.latent import UniformLatent, JointLatent from gan.network import Decoder, InfoGANDiscriminator, \ CrDiscriminator, MetricRegresser from gan.infogan_cr import INFOGAN_CR from gan.metric import FactorVAEMetric, DSpritesInceptionScore, \ DHSICMetric data, metric_data, latent_values, metadata = \ load_dSprites("data/dSprites") _, height, width, depth = data.shape latent_list = [] for i in range(self._config["uniform_reg_dim"]): latent_list.append( UniformLatent(in_dim=1, out_dim=1, low=-1.0, high=1.0, q_std=1.0, apply_reg=True)) if self._config["uniform_not_reg_dim"] > 0: latent_list.append( UniformLatent(in_dim=self._config["uniform_not_reg_dim"], out_dim=self._config["uniform_not_reg_dim"], low=-1.0, high=1.0, q_std=1.0, apply_reg=False)) latent = JointLatent(latent_list=latent_list) decoder = Decoder(output_width=width, output_height=height, output_depth=depth) infoGANDiscriminator = \ InfoGANDiscriminator( output_length=latent.reg_out_dim, q_l_dim=self._config["q_l_dim"]) crDiscriminator = CrDiscriminator(output_length=latent.num_reg_latent) shape_network = MetricRegresser( output_length=3, scope_name="dSpritesSampleQualityMetric_shape") checkpoint_dir = os.path.join(self._work_dir, "checkpoint") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sample_dir = os.path.join(self._work_dir, "sample") if not os.path.exists(sample_dir): os.makedirs(sample_dir) time_path = os.path.join(self._work_dir, "time.txt") metric_path = os.path.join(self._work_dir, "metric.csv") run_config = tf.ConfigProto() with tf.Session(config=run_config) as sess: factorVAEMetric = FactorVAEMetric(metric_data, sess=sess) dSpritesInceptionScore = DSpritesInceptionScore( sess=sess, do_training=False, data=data, metadata=metadata, latent_values=latent_values, network_path="metric_model/DSprites", shape_network=shape_network, sample_dir=sample_dir) dHSICMetric = DHSICMetric(sess=sess, data=data) metric_callbacks = [ factorVAEMetric, dSpritesInceptionScore, dHSICMetric ] gan = INFOGAN_CR( sess=sess, checkpoint_dir=checkpoint_dir, sample_dir=sample_dir, time_path=time_path, epoch=self._config["epoch"], batch_size=self._config["batch_size"], data=data, vis_freq=self._config["vis_freq"], vis_num_sample=self._config["vis_num_sample"], vis_num_rep=self._config["vis_num_rep"], latent=latent, decoder=decoder, infoGANDiscriminator=infoGANDiscriminator, crDiscriminator=crDiscriminator, gap_start=self._config["gap_start"], gap_decrease_times=self._config["gap_decrease_times"], gap_decrease=self._config["gap_decrease"], gap_decrease_batch=self._config["gap_decrease_batch"], cr_coe_start=self._config["cr_coe_start"], cr_coe_increase_times=self._config["cr_coe_increase_times"], cr_coe_increase=self._config["cr_coe_increase"], cr_coe_increase_batch=self._config["cr_coe_increase_batch"], info_coe_de=self._config["info_coe_de"], info_coe_infod=self._config["info_coe_infod"], metric_callbacks=metric_callbacks, metric_freq=self._config["metric_freq"], metric_path=metric_path, output_reverse=self._config["output_reverse"], de_lr=self._config["de_lr"], infod_lr=self._config["infod_lr"], crd_lr=self._config["crd_lr"], summary_freq=self._config["summary_freq"]) gan.build() gan.train()
def main(self): import os import tensorflow as tf from gan.load_data import load_dSprites from gan.latent import GaussianLatent, JointLatent from gan.network import VAEDecoder, VAEEncoder, TCDiscriminator, \ MetricRegresser from gan.factorVAE import FactorVAE from gan.metric import FactorVAEMetric, DSpritesInceptionScore, \ DHSICMetric data, metric_data, latent_values, metadata = \ load_dSprites("data/dSprites") _, height, width, depth = data.shape latent_list = [] for i in range(self._config["gaussian_dim"]): latent_list.append(GaussianLatent( in_dim=1, out_dim=1, loc=0.0, scale=1.0, q_std=1.0, apply_reg=True)) latent = JointLatent(latent_list=latent_list) decoder = VAEDecoder( output_width=width, output_height=height, output_depth=depth) encoder = VAEEncoder(output_length=latent.reg_in_dim) tcDiscriminator = TCDiscriminator() shape_network = MetricRegresser( output_length=3, scope_name="dSpritesSampleQualityMetric_shape") checkpoint_dir = os.path.join(self._work_dir, "checkpoint") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sample_dir = os.path.join(self._work_dir, "sample") if not os.path.exists(sample_dir): os.makedirs(sample_dir) time_path = os.path.join(self._work_dir, "time.txt") metric_path = os.path.join(self._work_dir, "metric.csv") run_config = tf.ConfigProto() with tf.Session(config=run_config) as sess: factorVAEMetric = FactorVAEMetric(metric_data, sess=sess) dSpritesInceptionScore = DSpritesInceptionScore( sess=sess, do_training=False, data=data, metadata=metadata, latent_values=latent_values, network_path="metric_model/DSprites", shape_network=shape_network, sample_dir=sample_dir) dHSICMetric = DHSICMetric( sess=sess, data=data) metric_callbacks = [factorVAEMetric, dSpritesInceptionScore, dHSICMetric] vae = FactorVAE( sess=sess, checkpoint_dir=checkpoint_dir, sample_dir=sample_dir, time_path=time_path, epoch=self._config["epoch"], batch_size=self._config["batch_size"], data=data, vis_freq=self._config["vis_freq"], vis_num_sample=self._config["vis_num_sample"], vis_num_rep=self._config["vis_num_rep"], latent=latent, decoder=decoder, encoder=encoder, tcDiscriminator=tcDiscriminator, tc_coe=self._config["tc_coe"], metric_callbacks=metric_callbacks, metric_freq=self._config["metric_freq"], metric_path=metric_path, output_reverse=self._config["output_reverse"]) vae.build() vae.train()
def main(self): import os import tensorflow as tf import pickle from gan.load_data import load_dSprites from gan.latent import GaussianLatent, JointLatent from gan.network import VAEDecoder, VAEEncoder, TCDiscriminator, \ MetricRegresser from gan.factorVAE import FactorVAE from gan.metric import FactorVAEMetric, DSpritesInceptionScore, \ DHSICMetric data, metric_data, latent_values, metadata = \ load_dSprites("data/dSprites") _, height, width, depth = data.shape latent_list = [] for i in range(self._config["gaussian_dim"]): latent_list.append(GaussianLatent( in_dim=1, out_dim=1, loc=0.0, scale=1.0, q_std=1.0, apply_reg=True)) latent = JointLatent(latent_list=latent_list) decoder = VAEDecoder( output_width=width, output_height=height, output_depth=depth) encoder = VAEEncoder(output_length=latent.reg_in_dim) tcDiscriminator = TCDiscriminator() shape_network = MetricRegresser( output_length=3, scope_name="dSpritesSampleQualityMetric_shape") checkpoint_dir = os.path.join(self._work_dir, "checkpoint") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sample_dir = os.path.join(self._work_dir, "sample") if not os.path.exists(sample_dir): os.makedirs(sample_dir) time_path = os.path.join(self._work_dir, "time.txt") metric_path = os.path.join(self._work_dir, "metric.csv") run_config = tf.ConfigProto() run_config.gpu_options.allow_growth = True with tf.Session(config=run_config) as sess: factorVAEMetric = FactorVAEMetric(metric_data, sess=sess) dSpritesInceptionScore = DSpritesInceptionScore( sess=sess, do_training=False, data=data, metadata=metadata, latent_values=latent_values, network_path="metric_model/DSprites", shape_network=shape_network, sample_dir=sample_dir) dHSICMetric = DHSICMetric( sess=sess, data=data) metric_callbacks = [factorVAEMetric, dSpritesInceptionScore, dHSICMetric] vae = FactorVAE( sess=sess, checkpoint_dir=checkpoint_dir, sample_dir=sample_dir, time_path=time_path, epoch=self._config["epoch"], batch_size=self._config["batch_size"], data=data, vis_freq=self._config["vis_freq"], vis_num_sample=self._config["vis_num_sample"], vis_num_rep=self._config["vis_num_rep"], latent=latent, decoder=decoder, encoder=encoder, tcDiscriminator=tcDiscriminator, tc_coe=self._config["tc_coe"], metric_callbacks=metric_callbacks, metric_freq=self._config["metric_freq"], metric_path=metric_path, output_reverse=self._config["output_reverse"]) vae.build() vae.load() metric_data_groups = [] L = 100 M = 1000 for i in range(M): fixed_latent_id = i % 10 latents_sampled = vae.latent.sample(L) latents_sampled[:, fixed_latent_id] = \ latents_sampled[0, fixed_latent_id] imgs_sampled = vae.sample_from(latents_sampled) metric_data_groups.append( {"img": imgs_sampled, "label": fixed_latent_id}) latents_sampled = vae.latent.sample(data.shape[0] / 10) metric_data_eval_std = vae.sample_from(latents_sampled) metric_data = { "groups": metric_data_groups, "img_eval_std": metric_data_eval_std} metric_data_path = os.path.join(self._work_dir, "metric_data.pkl") with open(metric_data_path, "wb") as f: pickle.dump(metric_data, f, protocol=2)
def main(self): import os import tensorflow as tf from gan.load_data import load_3Dpots from gan.latent import UniformLatent, JointLatent from gan.network import Decoder, InfoGANDiscriminator, \ CrDiscriminator from gan.infogan_cr import INFOGAN_CR from gan.metric import FactorVAEMetric, \ BetaVAEMetric, SAPMetric, FStatMetric, MIGMetric, DCIMetric import pickle data, metric_data, latent_values = load_3Dpots("data/3Dpots") _, height, width, depth = data.shape latent_list = [] for i in range(self._config["uniform_reg_dim"]): latent_list.append( UniformLatent(in_dim=1, out_dim=1, low=-1.0, high=1.0, q_std=1.0, apply_reg=True)) if self._config["uniform_not_reg_dim"] > 0: latent_list.append( UniformLatent(in_dim=self._config["uniform_not_reg_dim"], out_dim=self._config["uniform_not_reg_dim"], low=-1.0, high=1.0, q_std=1.0, apply_reg=False)) latent = JointLatent(latent_list=latent_list) decoder = Decoder(output_width=width, output_height=height, output_depth=depth) infoGANDiscriminator = \ InfoGANDiscriminator( output_length=latent.reg_out_dim, q_l_dim=self._config["q_l_dim"]) crDiscriminator = CrDiscriminator(output_length=latent.num_reg_latent) checkpoint_dir = os.path.join(self._work_dir, "checkpoint") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sample_dir = os.path.join(self._work_dir, "sample") if not os.path.exists(sample_dir): os.makedirs(sample_dir) time_path = os.path.join(self._work_dir, "time.txt") metric_path = os.path.join(self._work_dir, "metric.csv") run_config = tf.ConfigProto() with tf.Session(config=run_config) as sess: factorVAEMetric = FactorVAEMetric(metric_data, sess=sess) metric_callbacks = [factorVAEMetric] gan = INFOGAN_CR( sess=sess, checkpoint_dir=checkpoint_dir, sample_dir=sample_dir, time_path=time_path, epoch=self._config["epoch"], batch_size=self._config["batch_size"], data=data, vis_freq=self._config["vis_freq"], vis_num_sample=self._config["vis_num_sample"], vis_num_rep=self._config["vis_num_rep"], latent=latent, decoder=decoder, infoGANDiscriminator=infoGANDiscriminator, crDiscriminator=crDiscriminator, gap_start=self._config["gap_start"], gap_decrease_times=self._config["gap_decrease_times"], gap_decrease=self._config["gap_decrease"], gap_decrease_batch=self._config["gap_decrease_batch"], cr_coe_start=self._config["cr_coe_start"], cr_coe_increase_times=self._config["cr_coe_increase_times"], cr_coe_increase=self._config["cr_coe_increase"], cr_coe_increase_batch=self._config["cr_coe_increase_batch"], info_coe_de=self._config["info_coe_de"], info_coe_infod=self._config["info_coe_infod"], metric_callbacks=metric_callbacks, metric_freq=self._config["metric_freq"], metric_path=metric_path, output_reverse=self._config["output_reverse"], de_lr=self._config["de_lr"], infod_lr=self._config["infod_lr"], crd_lr=self._config["crd_lr"], summary_freq=self._config["summary_freq"]) gan.build() gan.load() results = {} factorVAEMetric_f = FactorVAEMetric(metric_data, sess=sess) factorVAEMetric_f.set_model(gan) results["FactorVAE"] = factorVAEMetric_f.evaluate(-1, -1, -1) betaVAEMetric_f = BetaVAEMetric(metric_data, sess=sess) betaVAEMetric_f.set_model(gan) results["betaVAE"] = betaVAEMetric_f.evaluate(-1, -1, -1) sapMetric_f = SAPMetric(metric_data, sess=sess) sapMetric_f.set_model(gan) results["SAP"] = sapMetric_f.evaluate(-1, -1, -1) fStatMetric_f = FStatMetric(metric_data, sess=sess) fStatMetric_f.set_model(gan) results["FStat"] = fStatMetric_f.evaluate(-1, -1, -1) migMetric_f = MIGMetric(metric_data, sess=sess) migMetric_f.set_model(gan) results["MIG"] = migMetric_f.evaluate(-1, -1, -1) for regressor in [ "Lasso", "LassoCV", "RandomForest", "RandomForestIBGAN", "RandomForestCV" ]: dciVAEMetric_f = DCIMetric(metric_data, sess=sess, regressor=regressor) dciVAEMetric_f.set_model(gan) results["DCI_{}".format(regressor)] = dciVAEMetric_f.evaluate( -1, -1, -1) with open(os.path.join(self._work_dir, "final_metrics.pkl"), "wb") as f: pickle.dump(results, f)
def main(self): import os import tensorflow as tf import pickle from gan.load_data import load_dSprites from gan.latent import GaussianLatent, JointLatent from gan.network import VAEDecoder, VAEEncoder, TCDiscriminator, \ MetricRegresser from gan.factorVAE import FactorVAE from gan.metric import FactorVAEMetric, DSpritesInceptionScore, \ DHSICMetric from gpu_task_scheduler.config_manager import ConfigManager from config_mc import config data, metric_data, latent_values, metadata = \ load_dSprites("data/dSprites") _, height, width, depth = data.shape latent_list = [] for i in range(self._config["gaussian_dim"]): latent_list.append( GaussianLatent(in_dim=1, out_dim=1, loc=0.0, scale=1.0, q_std=1.0, apply_reg=True)) latent = JointLatent(latent_list=latent_list) decoder = VAEDecoder(output_width=width, output_height=height, output_depth=depth) encoder = VAEEncoder(output_length=latent.reg_in_dim) tcDiscriminator = TCDiscriminator() shape_network = MetricRegresser( output_length=3, scope_name="dSpritesSampleQualityMetric_shape") checkpoint_dir = os.path.join(self._work_dir, "checkpoint") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sample_dir = os.path.join(self._work_dir, "sample") if not os.path.exists(sample_dir): os.makedirs(sample_dir) time_path = os.path.join(self._work_dir, "time.txt") metric_path = os.path.join(self._work_dir, "metric.csv") run_config = tf.ConfigProto() run_config.gpu_options.allow_growth = True with tf.Session(config=run_config) as sess: factorVAEMetric = FactorVAEMetric(metric_data, sess=sess) dSpritesInceptionScore = DSpritesInceptionScore( sess=sess, do_training=False, data=data, metadata=metadata, latent_values=latent_values, network_path="metric_model/DSprites", shape_network=shape_network, sample_dir=sample_dir) dHSICMetric = DHSICMetric(sess=sess, data=data) metric_callbacks = [ factorVAEMetric, dSpritesInceptionScore, dHSICMetric ] vae = FactorVAE(sess=sess, checkpoint_dir=checkpoint_dir, sample_dir=sample_dir, time_path=time_path, epoch=self._config["epoch"], batch_size=self._config["batch_size"], data=data, vis_freq=self._config["vis_freq"], vis_num_sample=self._config["vis_num_sample"], vis_num_rep=self._config["vis_num_rep"], latent=latent, decoder=decoder, encoder=encoder, tcDiscriminator=tcDiscriminator, tc_coe=self._config["tc_coe"], metric_callbacks=metric_callbacks, metric_freq=self._config["metric_freq"], metric_path=metric_path, output_reverse=self._config["output_reverse"]) vae.build() vae.load() results = [] configs = [] sub_config_manager = ConfigManager(config) while sub_config_manager.get_num_left_config() > 0: sub_config = sub_config_manager.get_next_config() metric_data_path = os.path.join(sub_config["work_dir"], "metric_data.pkl") with open(metric_data_path, "rb") as f: sub_metric_data = pickle.load(f) sub_factorVAEMetric = FactorVAEMetric(sub_metric_data, sess=sess) sub_factorVAEMetric.set_model(vae) sub_result = sub_factorVAEMetric.evaluate(-1, -1, -1) results.append(sub_result) configs.append(sub_config) with open(os.path.join(self._work_dir, "cross_evaluation.pkl"), "wb") as f: pickle.dump({ "results": results, "configs": configs }, f, protocol=2)
def main(self): import os import tensorflow as tf from gan.load_data import load_3Dpots from gan.latent import GaussianLatent, JointLatent from gan.network import VAEDecoder, VAEEncoder, TCDiscriminator from gan.factorVAE import FactorVAE from gan.metric import FactorVAEMetric, \ BetaVAEMetric, SAPMetric, FStatMetric, MIGMetric, DCIMetric import pickle data, metric_data, latent_values = load_3Dpots("data/3Dpots") _, height, width, depth = data.shape latent_list = [] for i in range(self._config["gaussian_dim"]): latent_list.append(GaussianLatent( in_dim=1, out_dim=1, loc=0.0, scale=1.0, q_std=1.0, apply_reg=True)) latent = JointLatent(latent_list=latent_list) decoder = VAEDecoder( output_width=width, output_height=height, output_depth=depth) encoder = VAEEncoder(output_length=latent.reg_in_dim) tcDiscriminator = TCDiscriminator() checkpoint_dir = os.path.join(self._work_dir, "checkpoint") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) sample_dir = os.path.join(self._work_dir, "sample") if not os.path.exists(sample_dir): os.makedirs(sample_dir) time_path = os.path.join(self._work_dir, "time.txt") metric_path = os.path.join(self._work_dir, "metric.csv") run_config = tf.ConfigProto() with tf.Session(config=run_config) as sess: factorVAEMetric = FactorVAEMetric(metric_data, sess=sess) metric_callbacks = [factorVAEMetric] vae = FactorVAE( sess=sess, checkpoint_dir=checkpoint_dir, sample_dir=sample_dir, time_path=time_path, epoch=self._config["epoch"], batch_size=self._config["batch_size"], data=data, vis_freq=self._config["vis_freq"], vis_num_sample=self._config["vis_num_sample"], vis_num_rep=self._config["vis_num_rep"], latent=latent, decoder=decoder, encoder=encoder, tcDiscriminator=tcDiscriminator, tc_coe=self._config["tc_coe"], metric_callbacks=metric_callbacks, metric_freq=self._config["metric_freq"], metric_path=metric_path, output_reverse=self._config["output_reverse"]) vae.build() vae.load() results = {} factorVAEMetric_f = FactorVAEMetric(metric_data, sess=sess) factorVAEMetric_f.set_model(vae) results["FactorVAE"] = factorVAEMetric_f.evaluate(-1, -1, -1) betaVAEMetric_f = BetaVAEMetric(metric_data, sess=sess) betaVAEMetric_f.set_model(vae) results["betaVAE"] = betaVAEMetric_f.evaluate(-1, -1, -1) sapMetric_f = SAPMetric(metric_data, sess=sess) sapMetric_f.set_model(vae) results["SAP"] = sapMetric_f.evaluate(-1, -1, -1) fStatMetric_f = FStatMetric(metric_data, sess=sess) fStatMetric_f.set_model(vae) results["FStat"] = fStatMetric_f.evaluate(-1, -1, -1) migMetric_f = MIGMetric(metric_data, sess=sess) migMetric_f.set_model(vae) results["MIG"] = migMetric_f.evaluate(-1, -1, -1) for regressor in ["Lasso", "LassoCV", "RandomForest", "RandomForestIBGAN", "RandomForestCV"]: dciVAEMetric_f = DCIMetric(metric_data, sess=sess, regressor=regressor) dciVAEMetric_f.set_model(vae) results["DCI_{}".format(regressor)] = dciVAEMetric_f.evaluate(-1, -1, -1) with open(os.path.join(self._work_dir, "final_metrics.pkl"), "wb") as f: pickle.dump(results, f)