# Register modules to checkpoint
    checkpoint_io.register_modules(generator=generator, )

    # Get model file
    model_file = config['test']['model_file']

    # Distributions
    ydist = get_ydist(nlabels, device=device)
    zdist = get_zdist('gauss', config['z_dist']['dim'], device=device)

    # Test generator
    generator_test = generator

    # Evaluator
    evaluator = Evaluator(generator_test,
                          zdist,
                          batch_size=config['test']['batch_size'],
                          device=device)
    evaluator_single = Evaluator(generator_test,
                                 zdist,
                                 batch_size=config['test']['batch_size'],
                                 device=device)

    # Load checkpoint
    load_dict = checkpoint_io.load(model_file)
    it = load_dict.get('it', -1)
    epoch_idx = load_dict.get('epoch_idx', -1)

    # Pick a random but fixed seed
    seed = torch.randint(0, 10000, (1, ))[0]

    # Evaluation Loop
示例#2
0
grid = np.reshape(grid, [-1, 2]).astype(np.float32)
grid = torch.from_numpy(grid).cuda()
grid_y = np.zeros([1000 * 1000]).astype(np.int64)
grid_y = torch.from_numpy(grid_y).cuda()

# Test generator
if config['training']['take_model_average']:
    generator_test = copy.deepcopy(generator)
    checkpoint_io.register_modules(generator_test=generator_test)
else:
    generator_test = generator

# Evaluator
evaluator = Evaluator(generator_test,
                      zdist,
                      ydist,
                      batch_size=batch_size,
                      device=device)

# Train
tstart = t0 = time.time()

# Load checkpoint if it exists
try:
    load_dict = checkpoint_io.load(model_file)
except FileNotFoundError:
    it = epoch_idx = -1
else:
    it = load_dict.get('it', -1)
    epoch_idx = load_dict.get('epoch_idx', -1)
    logger.load_stats('stats.p')
示例#3
0
if config['test']['use_model_average']:
    generator_test = copy.deepcopy(generator)
    checkpoint_io.register_modules(generator_test=generator_test)
else:
    generator_test = generator

# Distributions
ydist = get_ydist(nlabels, device=device)
zdist = get_zdist(config['z_dist']['type'],
                  config['z_dist']['dim'],
                  device=device)

# Evaluator
evaluator = Evaluator(generator_test,
                      zdist,
                      ydist,
                      batch_size=batch_size,
                      device=device)

# Load checkpoint if existant
load_dict = checkpoint_io.load(args.oldmodel)
it = load_dict.get('it', -1)
epoch_idx = load_dict.get('epoch_idx', -1)

# Inception score
if config['test']['compute_inception']:
    print('Computing inception score...')
    inception_mean, inception_std = evaluator.compute_inception_score()
    print('Inception score: %.4f +- %.4f' % (inception_mean, inception_std))

# Samples
        utils.save_images(x_real, path.join(out_dir, 'real.png'))

        # Test generator
        if config['training']['take_model_average']:
            generator_test = copy.deepcopy(generator)
            checkpoint_io.register_modules(generator_test=generator_test)
        else:
            generator_test = generator

        # Evaluator
        # NNN = 8000
        x_real, _ = utils.get_nsamples(test_loader, NNN)
        evaluator = Evaluator(generator_test,
                              zdist,
                              ydist,
                              batch_size=batch_size,
                              device=device,
                              fid_real_samples=x_real,
                              inception_nsamples=NNN,
                              fid_sample_size=NNN)
        # Train
        tstart = t0 = time.time()

        it = -1
        epoch_idx = -1

        # Reinitialize model average if needed
        if (config['training']['take_model_average']
                and config['training']['model_average_reinit']):
            update_average(generator_test, generator, 0.)

        # Learning rate anneling
示例#5
0
        # Test generator
        if config['training']['take_model_average']:
            generator_test = copy.deepcopy(generator)
            checkpoint_io.register_modules(generator_test=generator_test)
        else:
            generator_test = generator

        # Evaluator
        # evaluator = Evaluator(generator_test, zdist, ydist,
        #                       batch_size=batch_size, device=device)
        x_real_FID, _ = utils.get_nsamples(test_loader, NNN)
        evaluator = Evaluator(generator_test,
                              zdist,
                              ydist,
                              batch_size=batch_size,
                              device=device,
                              fid_real_samples=x_real_FID,
                              inception_nsamples=NNN,
                              fid_sample_size=NNN)

        it = -1
        epoch_idx = -1

        # Reinitialize model average if needed
        if (config['training']['take_model_average']
                and config['training']['model_average_reinit']):
            update_average(generator_test, generator, 0.)

        # Learning rate anneling
        g_scheduler = build_lr_scheduler(g_optimizer, config, last_epoch=it)
        d_scheduler = build_lr_scheduler(d_optimizer, config, last_epoch=it)
示例#6
0
def perform_evaluation(run_name, image_type):

    out_dir = os.path.join(os.getcwd(), '..', 'output', run_name)
    checkpoint_dir = os.path.join(out_dir, 'chkpts')
    checkpoints = sorted(glob.glob(os.path.join(checkpoint_dir, '*')))
    evaluation_dict = {}

    for point in checkpoints:
        if not int(
                point.split('/')[-1].split('_')[1].split('.')[0]) % 10000 == 0:
            continue

        iter_num = int(point.split('/')[-1].split('_')[1].split('.')[0])
        model_file = point.split('/')[-1]

        config = load_config('../configs/fr_default.yaml', None)
        is_cuda = (torch.cuda.is_available())
        checkpoint_io = CheckpointIO(checkpoint_dir=checkpoint_dir)
        device = torch.device("cuda:0" if is_cuda else "cpu")

        generator, discriminator = build_models(config)

        # Put models on gpu if needed
        generator = generator.to(device)
        discriminator = discriminator.to(device)

        # Use multiple GPUs if possible
        generator = nn.DataParallel(generator)
        discriminator = nn.DataParallel(discriminator)

        generator_test_9 = copy.deepcopy(generator)
        generator_test_99 = copy.deepcopy(generator)
        generator_test_999 = copy.deepcopy(generator)
        generator_test_9999 = copy.deepcopy(generator)

        # Register modules to checkpoint
        checkpoint_io.register_modules(
            generator=generator,
            generator_test_9=generator_test_9,
            generator_test_99=generator_test_99,
            generator_test_999=generator_test_999,
            generator_test_9999=generator_test_9999,
            discriminator=discriminator,
        )

        # Load checkpoint
        load_dict = checkpoint_io.load(model_file)

        # Distributions
        ydist = get_ydist(config['data']['nlabels'], device=device)
        zdist = get_zdist(config['z_dist']['type'],
                          config['z_dist']['dim'],
                          device=device)
        z_sample = torch.Tensor(np.load('z_data.npy')).to(device)

        #for name, model in zip(['0_', '09_', '099_', '0999_', '09999_'], [generator, generator_test_9, generator_test_99, generator_test_999, generator_test_9999]):
        for name, model in zip(
            ['099_', '0999_', '09999_'],
            [generator_test_99, generator_test_999, generator_test_9999]):

            # Evaluator
            evaluator = Evaluator(model, zdist, ydist, device=device)

            x_sample = []

            for i in range(10):
                x = evaluator.create_samples(z_sample[i * 1000:(i + 1) * 1000])
                x_sample.append(x)

            x_sample = torch.cat(x_sample)
            x_sample = x_sample / 2 + 0.5

            if not os.path.exists('fake_data'):
                os.makedirs('fake_data')

            for i in range(10000):
                torchvision.utils.save_image(x_sample[i, :, :, :],
                                             'fake_data/{}.png'.format(i))

            fid_score = calculate_fid_given_paths(
                ['fake_data', image_type + '_real'], 50, True, 2048)
            print(iter_num, name, fid_score)

            os.system("rm -rf " + "fake_data")

            evaluation_dict[(iter_num, name[:-1])] = {'FID': fid_score}

            if not os.path.exists('evaluation_data/' + run_name):
                os.makedirs('evaluation_data/' + run_name)

            pickle.dump(
                evaluation_dict,
                open('evaluation_data/' + run_name + '/eval_fid.p', 'wb'))
示例#7
0
def main():
    pp = pprint.PrettyPrinter(indent=1)
    pp.pprint({
        'data': config['data'],
        'generator': config['generator'],
        'discriminator': config['discriminator'],
        'clusterer': config['clusterer'],
        'training': config['training']
    })
    is_cuda = torch.cuda.is_available()

    # Short hands
    batch_size = config['training']['batch_size']
    log_every = config['training']['log_every']
    inception_every = config['training']['inception_every']
    backup_every = config['training']['backup_every']
    sample_nlabels = config['training']['sample_nlabels']
    nlabels = config['data']['nlabels']
    sample_nlabels = min(nlabels, sample_nlabels)

    checkpoint_dir = path.join(out_dir, 'chkpts')

    # Create missing directories
    if not path.exists(out_dir):
        os.makedirs(out_dir)
    if not path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)

    # Logger
    checkpoint_io = CheckpointIO(checkpoint_dir=checkpoint_dir)

    device = torch.device("cuda:0" if is_cuda else "cpu")

    train_dataset, _ = get_dataset(
        name=config['data']['type'],
        data_dir=config['data']['train_dir'],
        size=config['data']['img_size'],
        deterministic=config['data']['deterministic'])

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=batch_size,
        num_workers=config['training']['nworkers'],
        shuffle=True,
        pin_memory=True,
        sampler=None,
        drop_last=True)

    # Create models
    generator, discriminator = build_models(config)

    # Put models on gpu if needed
    generator = generator.to(device)
    discriminator = discriminator.to(device)

    for name, module in discriminator.named_modules():
        if isinstance(module, nn.Sigmoid):
            print('Found sigmoid layer in discriminator; not compatible with BCE with logits')
            exit()

    g_optimizer, d_optimizer = build_optimizers(generator, discriminator, config)

    devices = [int(x) for x in args.devices]
    generator = nn.DataParallel(generator, device_ids=devices)
    discriminator = nn.DataParallel(discriminator, device_ids=devices)

    # Register modules to checkpoint
    checkpoint_io.register_modules(generator=generator,
                                   discriminator=discriminator,
                                   g_optimizer=g_optimizer,
                                   d_optimizer=d_optimizer)

    # Logger
    logger = Logger(log_dir=path.join(out_dir, 'logs'),
                    img_dir=path.join(out_dir, 'imgs'),
                    monitoring=config['training']['monitoring'],
                    monitoring_dir=path.join(out_dir, 'monitoring'))

    # Distributions
    ydist = get_ydist(nlabels, device=device)
    zdist = get_zdist(config['z_dist']['type'], config['z_dist']['dim'], device=device)

    ntest = config['training']['ntest']
    x_test, y_test = utils.get_nsamples(train_loader, ntest)
    x_cluster, y_cluster = utils.get_nsamples(train_loader, config['clusterer']['nimgs'])
    x_test, y_test = x_test.to(device), y_test.to(device)
    z_test = zdist.sample((ntest, ))
    utils.save_images(x_test, path.join(out_dir, 'real.png'))
    logger.add_imgs(x_test, 'gt', 0)

    # Test generator
    if config['training']['take_model_average']:
        print('Taking model average')
        bad_modules = [nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d]
        for model in [generator, discriminator]:
            for name, module in model.named_modules():
                for bad_module in bad_modules:
                    if isinstance(module, bad_module):
                        print('Batch norm in discriminator not compatible with exponential moving average')
                        exit()
        generator_test = copy.deepcopy(generator)
        checkpoint_io.register_modules(generator_test=generator_test)
    else:
        generator_test = generator

    clusterer = get_clusterer(config)(discriminator=discriminator,
                                      x_cluster=x_cluster,
                                      x_labels=y_cluster,
                                      gt_nlabels=config['data']['nlabels'],
                                      **config['clusterer']['kwargs'])

    # Load checkpoint if it exists
    it = utils.get_most_recent(checkpoint_dir, 'model') if args.model_it == -1 else args.model_it
    it, epoch_idx, loaded_clusterer = checkpoint_io.load_models(it=it, load_samples='supervised' != config['clusterer']['name'])

    if loaded_clusterer is None:
        print('Initializing new clusterer. The first clustering can be quite slow.')
        clusterer.recluster(discriminator=discriminator)
        checkpoint_io.save_clusterer(clusterer, it=0)
        np.savez(os.path.join(checkpoint_dir, 'cluster_samples.npz'), x=x_cluster)
    else:
        print('Using loaded clusterer')
        clusterer = loaded_clusterer

    # Evaluator
    evaluator = Evaluator(
        generator_test,
        zdist,
        ydist,
        train_loader=train_loader,
        clusterer=clusterer,
        batch_size=batch_size,
        device=device,
        inception_nsamples=config['training']['inception_nsamples'])

    # Trainer
    trainer = Trainer(generator,
                      discriminator,
                      g_optimizer,
                      d_optimizer,
                      gan_type=config['training']['gan_type'],
                      reg_type=config['training']['reg_type'],
                      reg_param=config['training']['reg_param'])

    # Training loop
    print('Start training...')
    while it < args.nepochs * len(train_loader):
        epoch_idx += 1

        for x_real, y in train_loader:
            it += 1

            x_real, y = x_real.to(device), y.to(device)
            z = zdist.sample((batch_size, ))
            y = clusterer.get_labels(x_real, y).to(device)

            # Discriminator updates
            dloss, reg = trainer.discriminator_trainstep(x_real, y, z)
            logger.add('losses', 'discriminator', dloss, it=it)
            logger.add('losses', 'regularizer', reg, it=it)

            # Generators updates
            gloss = trainer.generator_trainstep(y, z)
            logger.add('losses', 'generator', gloss, it=it)

            if config['training']['take_model_average']:
                update_average(generator_test, generator, beta=config['training']['model_average_beta'])

            # Print stats
            if it % log_every == 0:
                g_loss_last = logger.get_last('losses', 'generator')
                d_loss_last = logger.get_last('losses', 'discriminator')
                d_reg_last = logger.get_last('losses', 'regularizer')
                print('[epoch %0d, it %4d] g_loss = %.4f, d_loss = %.4f, reg=%.4f'
                      % (epoch_idx, it, g_loss_last, d_loss_last, d_reg_last))

            if it % config['training']['recluster_every'] == 0 and it > config['training']['burnin_time']:
                # print cluster distribution for online methods
                if it % 100 == 0 and config['training']['recluster_every'] <= 100:
                    print(f'[epoch {epoch_idx}, it {it}], distribution: {clusterer.get_label_distribution(x_real)}')
                clusterer.recluster(discriminator=discriminator, x_batch=x_real)

            # (i) Sample if necessary
            if it % config['training']['sample_every'] == 0:
                print('Creating samples...')
                x = evaluator.create_samples(z_test, y_test)
                x = evaluator.create_samples(z_test, clusterer.get_labels(x_test, y_test).to(device))
                logger.add_imgs(x, 'all', it)

                for y_inst in range(sample_nlabels):
                    x = evaluator.create_samples(z_test, y_inst)
                    logger.add_imgs(x, '%04d' % y_inst, it)

            # (ii) Compute inception if necessary
            if it % inception_every == 0 and it > 0:
                print('PyTorch Inception score...')
                inception_mean, inception_std = evaluator.compute_inception_score()
                logger.add('metrics', 'pt_inception_mean', inception_mean, it=it)
                logger.add('metrics', 'pt_inception_stddev', inception_std, it=it)
                print(f'[epoch {epoch_idx}, it {it}] pt_inception_mean: {inception_mean}, pt_inception_stddev: {inception_std}')

            # (iii) Backup if necessary
            if it % backup_every == 0:
                print('Saving backup...')
                checkpoint_io.save('model_%08d.pt' % it, it=it)
                checkpoint_io.save_clusterer(clusterer, int(it))
                logger.save_stats('stats_%08d.p' % it)

                if it > 0:
                    checkpoint_io.save('model.pt', it=it)
示例#8
0
if config['test']['use_model_average']:
    generator_test = copy.deepcopy(generator)
    checkpoint_io.register_modules(generator_test=generator_test)
else:
    generator_test = generator

# Distributions
ydist = get_ydist(nlabels, device=device)
zdist = get_zdist(config['z_dist']['type'],
                  config['z_dist']['dim'],
                  device=device)

# Evaluator
evaluator = Evaluator(generator_test,
                      zdist,
                      ydist,
                      batch_size=batch_size,
                      device=device)

print(generator.module.resnet_0_0.conv_0.weight[1, 1, :, :])

# Load checkpoint if existant
load_dict = checkpoint_io.load(model_file)
it = load_dict.get('it', -1)
epoch_idx = load_dict.get('epoch_idx', -1)

print(generator.module.resnet_0_0.conv_0.weight[1, 1, :, :])

TrainModeSave = DATA
torch.save(generator.module.state_dict(),
           save_dir + TrainModeSave + 'Pre_generator')
示例#9
0
文件: train.py 项目: zzz622848/vgan
utils.save_images(x_real, path.join(out_dir, 'real.png'))

# Test generator
if config['training']['take_model_average']:
    generator_test = copy.deepcopy(generator)
    checkpoint_io.register_modules(generator_test=generator_test)
else:
    generator_test = generator

# Evaluator
if inception_every > 0 and compute_fid:
    # This will also compute FID
    # Load fid_samples (1024) many.
    fid_real_samples, _ = utils.get_nsamples(train_loader, fid_sample_size)
    evaluator = Evaluator(generator_test, zdist, ydist,
                          batch_size=batch_size, device=device,
                          fid_real_samples=fid_real_samples,
                          fid_sample_size=fid_sample_size)
else:
    evaluator = Evaluator(generator_test, zdist, ydist,
                          batch_size=batch_size, device=device)
# Train
tstart = t0 = time.time()
it = epoch_idx = -1

# Load checkpoint if existant
it = checkpoint_io.load('model.pt')
if it != -1:
    logger.load_stats('stats.p')
    if adaptive_beta:
        # Set reg_param to the last reg_param
        reg_param = logger.stats['learning_rates']['beta_value'][-1]
示例#10
0
path = "Final_cifar_nopid_sigmoid.1_"
for epoch_id in range(40, 80):
    model_name = "/home/kunxu/Workspace/GAN_PID/output/" + path
    config = load_config(os.path.join(model_name, "config.yaml"),
                         'configs/default.yaml')
    generator, discriminator = build_models(config)
    generator = torch.nn.DataParallel(generator)
    zdist = get_zdist(config['z_dist']['type'],
                      config['z_dist']['dim'],
                      device=device)
    ydist = get_ydist(1, device=device)
    checkpoint_io = CheckpointIO(checkpoint_dir="./tmp")
    checkpoint_io.register_modules(generator_test=generator)
    evaluator = Evaluator(generator,
                          zdist,
                          ydist,
                          batch_size=100,
                          device=device)

    ckptpath = os.path.join(model_name, "chkpts",
                            "model_{:08d}.pt".format(epoch_id * 10000 + 9999))
    print(ckptpath)
    load_dict = checkpoint_io.load(ckptpath)
    img_list = []
    for i in range(500):
        ztest = zdist.sample((100, ))
        x = evaluator.create_samples(ztest)
        img_list.append(x.cpu().numpy())
    img_list = np.concatenate(img_list, axis=0)
    m, s = evaluation(img_list)
    all_results.append([float(m), float(s)])