def test_pickleable(self): env = GridWorldEnv(desc="8x8") round_trip = pickle.loads(pickle.dumps(env)) assert round_trip assert round_trip.start_state == env.start_state step_env(round_trip) round_trip.close() env.close()
def test_does_not_modify_action(self): env = GridWorldEnv(desc='8x8') a = env.action_space.sample() a_copy = a env.reset() env.step(a) assert a == a_copy env.close()
def test_does_not_modify_action(self): env = GridWorldEnv(desc="8x8") a = env.action_space.sample() a_copy = a env.reset() env.step(a) self.assertEqual(a, a_copy) env.close()
def test_obtain_samples(ray_local_session_fixture): del ray_local_session_fixture env = GridWorldEnv(desc='4x4') policy = ScriptedPolicy( scripted_actions=[2, 2, 1, 0, 3, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1]) algo = Mock(env_spec=env.spec, policy=policy, max_episode_length=16) assert ray.is_initialized() workers = WorkerFactory(seed=100, max_episode_length=algo.max_episode_length, n_workers=8) sampler1 = RaySampler.from_worker_factory(workers, policy, env) sampler2 = LocalSampler.from_worker_factory(workers, policy, env) eps1 = sampler1.obtain_samples(0, 1000, tuple(algo.policy.get_param_values())) eps2 = sampler2.obtain_samples(0, 1000, tuple(algo.policy.get_param_values())) assert eps1.observations.shape[0] >= 1000 assert eps1.actions.shape[0] >= 1000 assert (sum(eps1.rewards[:eps1.lengths[0]]) == sum( eps2.rewards[:eps2.lengths[0]]) == 1) true_obs = np.array([0, 1, 2, 6, 10, 14]) true_actions = np.array([2, 2, 1, 1, 1, 2]) true_rewards = np.array([0, 0, 0, 0, 0, 1]) start = 0 for length in eps1.lengths: observations = eps1.observations[start:start + length] actions = eps1.actions[start:start + length] rewards = eps1.rewards[start:start + length] assert np.array_equal(observations, true_obs) assert np.array_equal(actions, true_actions) assert np.array_equal(rewards, true_rewards) start += length sampler1.shutdown_worker() sampler2.shutdown_worker() env.close()