示例#1
0
def run_garage(env, seed, log_dir):
    """
    Create garage model and training.

    Replace the ppo with the algorithm you want to run.

    :param env: Environment of the task.
    :param seed: Random seed for the trial.
    :param log_dir: Log dir path.
    :return:
    """
    deterministic.set_seed(seed)
    env.reset()

    with LocalRunner() as runner:
        env = TfEnv(env)

        action_noise = OUStrategy(env.spec, sigma=params['sigma'])

        policy = ContinuousMLPPolicy(
            env_spec=env.spec,
            hidden_sizes=params['policy_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            output_nonlinearity=tf.nn.tanh,
            input_include_goal=True,
        )

        qf = ContinuousMLPQFunction(
            env_spec=env.spec,
            hidden_sizes=params['qf_hidden_sizes'],
            hidden_nonlinearity=tf.nn.relu,
            input_include_goal=True,
        )

        replay_buffer = HerReplayBuffer(
            env_spec=env.spec,
            size_in_transitions=params['replay_buffer_size'],
            time_horizon=params['n_rollout_steps'],
            replay_k=0.4,
            reward_fun=env.compute_reward,
        )

        algo = DDPG(
            env_spec=env.spec,
            policy=policy,
            qf=qf,
            replay_buffer=replay_buffer,
            policy_lr=params['policy_lr'],
            qf_lr=params['qf_lr'],
            plot=False,
            target_update_tau=params['tau'],
            n_epochs=params['n_epochs'],
            n_epoch_cycles=params['n_epoch_cycles'],
            n_train_steps=params['n_train_steps'],
            discount=params['discount'],
            exploration_strategy=action_noise,
            policy_optimizer=tf.train.AdamOptimizer,
            qf_optimizer=tf.train.AdamOptimizer,
            buffer_batch_size=256,
            input_include_goal=True,
        )

        # Set up logger since we are not using run_experiment
        tabular_log_file = osp.join(log_dir, 'progress.csv')
        logger.add_output(StdOutput())
        logger.add_output(CsvOutput(tabular_log_file))
        logger.add_output(TensorBoardOutput(log_dir))

        runner.setup(algo, env)
        runner.train(
            n_epochs=params['n_epochs'],
            n_epoch_cycles=params['n_epoch_cycles'],
            batch_size=params['n_rollout_steps'])

        logger.remove_all()

        return tabular_log_file
示例#2
0
def pearl_half_cheetah_vel(ctxt=None,
                           seed=1,
                           num_epochs=500,
                           num_train_tasks=100,
                           num_test_tasks=30,
                           latent_size=5,
                           encoder_hidden_size=200,
                           net_size=300,
                           meta_batch_size=16,
                           num_steps_per_epoch=2000,
                           num_initial_steps=2000,
                           num_tasks_sample=5,
                           num_steps_prior=400,
                           num_extra_rl_steps_posterior=600,
                           batch_size=256,
                           embedding_batch_size=100,
                           embedding_mini_batch_size=100,
                           max_path_length=200,
                           reward_scale=5.,
                           use_gpu=False):
    """Train PEARL with HalfCheetahVel environment.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        num_epochs (int): Number of training epochs.
        num_train_tasks (int): Number of tasks for training.
        num_test_tasks (int): Number of tasks for testing.
        latent_size (int): Size of latent context vector.
        encoder_hidden_size (int): Output dimension of dense layer of the
            context encoder.
        net_size (int): Output dimension of a dense layer of Q-function and
            value function.
        meta_batch_size (int): Meta batch size.
        num_steps_per_epoch (int): Number of iterations per epoch.
        num_initial_steps (int): Number of transitions obtained per task before
            training.
        num_tasks_sample (int): Number of random tasks to obtain data for each
            iteration.
        num_steps_prior (int): Number of transitions to obtain per task with
            z ~ prior.
        num_extra_rl_steps_posterior (int): Number of additional transitions
            to obtain per task with z ~ posterior that are only used to train
            the policy and NOT the encoder.
        batch_size (int): Number of transitions in RL batch.
        embedding_batch_size (int): Number of transitions in context batch.
        embedding_mini_batch_size (int): Number of transitions in mini context
            batch; should be same as embedding_batch_size for non-recurrent
            encoder.
        max_path_length (int): Maximum path length.
        reward_scale (int): Reward scale.
        use_gpu (bool): Whether or not to use GPU for training.

    """
    set_seed(seed)
    encoder_hidden_sizes = (encoder_hidden_size, encoder_hidden_size,
                            encoder_hidden_size)
    # create multi-task environment and sample tasks
    env_sampler = SetTaskSampler(
        lambda: GarageEnv(normalize(HalfCheetahVelEnv())))
    env = env_sampler.sample(num_train_tasks)
    test_env_sampler = SetTaskSampler(
        lambda: GarageEnv(normalize(HalfCheetahVelEnv())))

    runner = LocalRunner(ctxt)

    # instantiate networks
    augmented_env = PEARL.augment_env_spec(env[0](), latent_size)
    qf = ContinuousMLPQFunction(env_spec=augmented_env,
                                hidden_sizes=[net_size, net_size, net_size])

    vf_env = PEARL.get_env_spec(env[0](), latent_size, 'vf')
    vf = ContinuousMLPQFunction(env_spec=vf_env,
                                hidden_sizes=[net_size, net_size, net_size])

    inner_policy = TanhGaussianMLPPolicy(
        env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size])

    pearl = PEARL(
        env=env,
        policy_class=ContextConditionedPolicy,
        encoder_class=MLPEncoder,
        inner_policy=inner_policy,
        qf=qf,
        vf=vf,
        num_train_tasks=num_train_tasks,
        num_test_tasks=num_test_tasks,
        latent_dim=latent_size,
        encoder_hidden_sizes=encoder_hidden_sizes,
        test_env_sampler=test_env_sampler,
        meta_batch_size=meta_batch_size,
        num_steps_per_epoch=num_steps_per_epoch,
        num_initial_steps=num_initial_steps,
        num_tasks_sample=num_tasks_sample,
        num_steps_prior=num_steps_prior,
        num_extra_rl_steps_posterior=num_extra_rl_steps_posterior,
        batch_size=batch_size,
        embedding_batch_size=embedding_batch_size,
        embedding_mini_batch_size=embedding_mini_batch_size,
        max_path_length=max_path_length,
        reward_scale=reward_scale,
    )

    tu.set_gpu_mode(use_gpu, gpu_id=0)
    if use_gpu:
        pearl.to()

    runner.setup(algo=pearl,
                 env=env[0](),
                 sampler_cls=LocalSampler,
                 sampler_args=dict(max_path_length=max_path_length),
                 n_workers=1,
                 worker_class=PEARLWorker)

    runner.train(n_epochs=num_epochs, batch_size=batch_size)
 def test_singleton_pool(self):
     max_cpus = 8
     with LocalRunner(max_cpus=max_cpus):
         assert max_cpus == singleton_pool.n_parallel, (
             'LocalRunner(max_cpu) should set up singleton_pool.')
 def test_external_sess(self):
     with tf.Session() as sess:
         with LocalRunner(sess=sess):
             pass
         # sess should still be the default session here.
         tf.no_op().run()
示例#5
0
文件: MBPG_test.py 项目: gaosh/MBPG
def run_task(snapshot_config, *_):
    """Set up environment and algorithm and run the task.
    Args:
        snapshot_config (garage.experiment.SnapshotConfig): The snapshot
            configuration used by LocalRunner to create the snapshotter.
            If None, it will create one with default settings.
        _ : Unused parameters
    """

    #count = 1
    th = 1.8
    g_max = 0.05
    star_version = args.IS_MBPG_star
    if args.env == 'CartPole':
        #CartPole

        env = TfEnv(normalize(CartPoleEnv()))
        runner = LocalRunner(snapshot_config)
        batch_size = 5000
        max_length = 100
        n_timestep = 5e5
        n_counts = 5
        name = 'CartPole'
        #grad_factor = 5
        grad_factor = 100
        th = 1.2
        # # batchsize:1
        # lr = 0.1
        # w = 1.5
        # c = 15

        #batchsize:50
        lr = 0.75
        c = 1
        w = 1

        # for MBPG+:
        # lr = 1.2

        #g_max = 0.03
        discount = 0.995
        path = './init/CartPole_policy.pth'

    if args.env == 'Walker':
        #Walker_2d
        env = TfEnv(normalize(Walker2dEnv()))
        runner = LocalRunner(snapshot_config)
        batch_size = 50000
        max_length = 500

        th = 1.2

        n_timestep = 1e7
        n_counts = 5
        lr = 0.75
        w = 2
        c = 5
        grad_factor = 10

        # for MBPG+:
        #lr = 0.9

        discount = 0.999

        name = 'Walk'
        path = './init/Walk_policy.pth'

    if args.env == 'Hopper':
        #Hopper
        env = TfEnv(normalize(HopperEnv()))
        runner = LocalRunner(snapshot_config)

        batch_size = 50000

        max_length = 1000
        th = 1.5
        n_timestep = 1e7
        n_counts = 5
        lr = 0.75
        w = 1
        c = 3
        grad_factor = 10
        g_max = 0.15
        discount = 0.999

        name = 'Hopper'
        path = './init/Hopper_policy.pth'

    if args.env == 'HalfCheetah':
        env = TfEnv(normalize(HalfCheetahEnv()))
        runner = LocalRunner(snapshot_config)
        batch_size = 10000
        #batch_size = 50000
        max_length = 500

        n_timestep = 1e7
        n_counts = 5
        lr = 0.6
        w = 3
        c = 7
        grad_factor = 10
        th = 1.2
        g_max = 0.06

        discount = 0.999

        name = 'HalfCheetah'
        path = './init/HalfCheetah_policy.pth'
    for i in range(n_counts):
        print(env.spec)

        if args.env == 'CartPole':
            policy = CategoricalMLPPolicy(env.spec,
                                          hidden_sizes=[8, 8],
                                          hidden_nonlinearity=torch.tanh,
                                          output_nonlinearity=None)
        else:
            policy = GaussianMLPPolicy(env.spec,
                                       hidden_sizes=[64, 64],
                                       hidden_nonlinearity=torch.tanh,
                                       output_nonlinearity=None)
        policy.load_state_dict(torch.load(path))
        baseline = LinearFeatureBaseline(env_spec=env.spec)

        algo = MBPG_IM(
            env_spec=env.spec,
            env=env,
            env_name=name,
            policy=policy,
            baseline=baseline,
            max_path_length=max_length,
            discount=discount,
            grad_factor=grad_factor,
            policy_lr=lr,
            c=c,
            w=w,
            n_timestep=n_timestep,
            #count=count,
            th=th,
            batch_size=batch_size,
            center_adv=True,
            g_max=g_max,
            #decay_learning_rate=d_lr,
            star_version=star_version)

        runner.setup(algo, env)
        runner.train(n_epochs=100, batch_size=batch_size)
示例#6
0
def mtsac_metaworld_mt50(ctxt=None, seed=1, use_gpu=False, _gpu=0):
    """Train MTSAC with MT50 environment.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        use_gpu (bool): Used to enable ussage of GPU in training.
        _gpu (int): The ID of the gpu (used on multi-gpu machines).

    """
    deterministic.set_seed(seed)
    runner = LocalRunner(ctxt)
    task_names = mwb.MT50.get_train_tasks().all_task_names
    train_envs = []
    test_envs = []
    for task_name in task_names:
        train_env = normalize(GarageEnv(mwb.MT50.from_task(task_name)),
                              normalize_reward=True)
        test_env = normalize(GarageEnv(mwb.MT50.from_task(task_name)))
        train_envs.append(train_env)
        test_envs.append(test_env)
    mt50_train_envs = MultiEnvWrapper(train_envs,
                                      sample_strategy=round_robin_strategy,
                                      mode='vanilla')
    mt50_test_envs = MultiEnvWrapper(test_envs,
                                     sample_strategy=round_robin_strategy,
                                     mode='vanilla')
    policy = TanhGaussianMLPPolicy(
        env_spec=mt50_train_envs.spec,
        hidden_sizes=[400, 400, 400],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPQFunction(env_spec=mt50_train_envs.spec,
                                 hidden_sizes=[400, 400, 400],
                                 hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPQFunction(env_spec=mt50_train_envs.spec,
                                 hidden_sizes=[400, 400, 400],
                                 hidden_nonlinearity=F.relu)

    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), )

    timesteps = 100000000
    batch_size = int(150 * mt50_train_envs.num_tasks)
    num_evaluation_points = 500
    epochs = timesteps // batch_size
    epoch_cycles = epochs // num_evaluation_points
    epochs = epochs // epoch_cycles
    mtsac = MTSAC(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  gradient_steps_per_itr=150,
                  max_path_length=250,
                  eval_env=mt50_test_envs,
                  env_spec=mt50_train_envs.spec,
                  num_tasks=10,
                  steps_per_epoch=epoch_cycles,
                  replay_buffer=replay_buffer,
                  min_buffer_size=7500,
                  target_update_tau=5e-3,
                  discount=0.99,
                  buffer_batch_size=6400)
    set_gpu_mode(use_gpu, _gpu)
    mtsac.to()
    runner.setup(algo=mtsac, env=mt50_train_envs, sampler_cls=LocalSampler)
    runner.train(n_epochs=epochs, batch_size=batch_size)
def diayn_point_mass_multigoal(ctxt=None, seed=1):

    deterministic.set_seed(seed)
    runner = LocalRunner(snapshot_config=ctxt)
    env = MultiGoalEnv()
    skills_num = 6

    policy = TanhGaussianMLPSkillPolicy(
        env_spec=env.spec,
        skills_num=skills_num,
        hidden_sizes=[256, 256],
        hidden_nonlinearity=nn.ReLU,
        output_nonlinearity=None,
        min_std=np.exp(-20.),
        max_std=np.exp(2.),
    )

    qf1 = ContinuousMLPSkillQFunction(env_spec=env.spec,
                                      skills_num=skills_num,
                                      hidden_sizes=[256, 256],
                                      hidden_nonlinearity=F.relu)

    qf2 = ContinuousMLPSkillQFunction(env_spec=env.spec,
                                      skills_num=skills_num,
                                      hidden_sizes=[256, 256],
                                      hidden_nonlinearity=F.relu)

    discriminator = MLPDiscriminator(env_spec=env.spec,
                                     skills_num=skills_num,
                                     hidden_sizes=[64, 64],
                                     hidden_nonlinearity=F.relu)

    replay_buffer = PathBuffer(capacity_in_transitions=int(1e6))

    diayn = DIAYN(
        env_spec=env.spec,
        skills_num=skills_num,
        discriminator=discriminator,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        gradient_steps_per_itr=1000,
        max_path_length=500,
        replay_buffer=replay_buffer,
        min_buffer_size=1e4,
        recorded=True,  # enable the video recording func
        is_gym_render=False,
        media_save_path='diayn_2d_multigoal/',
        target_update_tau=5e-3,
        discount=0.99,
        buffer_batch_size=256,
        reward_scale=1.,
        steps_per_epoch=1)

    if torch.cuda.is_available():
        tu.set_gpu_mode(True)
    else:
        tu.set_gpu_mode(False)
    diayn.to()
    worker_args = {"skills_num": skills_num}
    runner.setup(algo=diayn,
                 env=env,
                 sampler_cls=LocalSkillSampler,
                 worker_class=SkillWorker,
                 worker_args=worker_args)
    runner.train(n_epochs=1000, batch_size=1000)
示例#8
0
    def test_pearl_ml1_push(self):
        """Test PEARL with ML1 Push environment."""
        params = dict(seed=1,
                      num_epochs=1,
                      num_train_tasks=5,
                      num_test_tasks=1,
                      latent_size=7,
                      encoder_hidden_sizes=[10, 10, 10],
                      net_size=30,
                      meta_batch_size=16,
                      num_steps_per_epoch=40,
                      num_initial_steps=40,
                      num_tasks_sample=15,
                      num_steps_prior=15,
                      num_extra_rl_steps_posterior=15,
                      batch_size=256,
                      embedding_batch_size=8,
                      embedding_mini_batch_size=8,
                      max_path_length=50,
                      reward_scale=10.,
                      use_information_bottleneck=True,
                      use_next_obs_in_context=False,
                      use_gpu=False)

        net_size = params['net_size']
        set_seed(params['seed'])
        env_sampler = SetTaskSampler(
            lambda: GarageEnv(normalize(ML1.get_train_tasks('push-v1'))))
        env = env_sampler.sample(params['num_train_tasks'])

        test_env_sampler = SetTaskSampler(
            lambda: GarageEnv(normalize(ML1.get_test_tasks('push-v1'))))

        augmented_env = PEARL.augment_env_spec(env[0](), params['latent_size'])
        qf = ContinuousMLPQFunction(
            env_spec=augmented_env,
            hidden_sizes=[net_size, net_size, net_size])

        vf_env = PEARL.get_env_spec(env[0](), params['latent_size'], 'vf')
        vf = ContinuousMLPQFunction(
            env_spec=vf_env, hidden_sizes=[net_size, net_size, net_size])

        inner_policy = TanhGaussianMLPPolicy(
            env_spec=augmented_env,
            hidden_sizes=[net_size, net_size, net_size])

        pearl = PEARL(
            env=env,
            policy_class=ContextConditionedPolicy,
            encoder_class=MLPEncoder,
            inner_policy=inner_policy,
            qf=qf,
            vf=vf,
            num_train_tasks=params['num_train_tasks'],
            num_test_tasks=params['num_test_tasks'],
            latent_dim=params['latent_size'],
            encoder_hidden_sizes=params['encoder_hidden_sizes'],
            test_env_sampler=test_env_sampler,
            meta_batch_size=params['meta_batch_size'],
            num_steps_per_epoch=params['num_steps_per_epoch'],
            num_initial_steps=params['num_initial_steps'],
            num_tasks_sample=params['num_tasks_sample'],
            num_steps_prior=params['num_steps_prior'],
            num_extra_rl_steps_posterior=params[
                'num_extra_rl_steps_posterior'],
            batch_size=params['batch_size'],
            embedding_batch_size=params['embedding_batch_size'],
            embedding_mini_batch_size=params['embedding_mini_batch_size'],
            max_path_length=params['max_path_length'],
            reward_scale=params['reward_scale'],
        )

        set_gpu_mode(params['use_gpu'], gpu_id=0)
        if params['use_gpu']:
            pearl.to()

        runner = LocalRunner(snapshot_config)
        runner.setup(
            algo=pearl,
            env=env[0](),
            sampler_cls=LocalSampler,
            sampler_args=dict(max_path_length=params['max_path_length']),
            n_workers=1,
            worker_class=PEARLWorker)

        runner.train(n_epochs=params['num_epochs'],
                     batch_size=params['batch_size'])
示例#9
0
def kant_cheetah_hurdle(
        ctxt=None,
        seed=seed,
        num_skills=skills_num,
        num_epochs=param_num_epoches,
        num_train_tasks=param_train_tasks_num,
        num_test_tasks=param_test_tasks_num,
        is_encoder_recurrent=False,
        latent_size=param_latent_size,
        encoder_hidden_size=param_encoder_hidden_size,
        net_size=param_net_size,
        meta_batch_size=param_meta_batch_size,
        num_steps_per_epoch=param_num_steps_per_epoch,
        num_initial_steps=param_num_initial_steps,
        num_tasks_sample=param_num_tasks_sample,
        num_steps_prior=param_num_steps_prior,
        num_extra_rl_steps_posterior=param_num_extra_rl_steps_posterior,
        num_skills_sample=param_num_skills_sample,
        num_skills_reason_steps=param_num_skills_reason_steps,
        batch_size=param_batch_size,
        embedding_batch_size=param_embedding_batch_size,
        embedding_mini_batch_size=param_embedding_mini_batch_size,
        max_path_length=param_max_path_length,
        skills_reason_reward_scale=param_skills_reason_reward_scale,
        tasks_adapt_reward_scale=param_tasks_adapt_reward_scale,
        use_gpu=param_use_gpu):
    assert num_train_tasks is skills_num

    set_seed(seed)

    encoder_hidden_sizes = (encoder_hidden_size, encoder_hidden_size,
                            encoder_hidden_size)

    ML_train_envs = [
        DiaynEnvWrapper(task_proposer, skills_num, task_name,
                        normalize(HalfCheetahEnv_Hurdle()))
        for task_name in range(skills_num)
    ]

    env_sampler = EnvPoolSampler(ML_train_envs)
    env = env_sampler.sample(num_train_tasks)

    runner = LocalRunner(ctxt)

    qf_env = Kant.get_env_spec(env[0](), latent_size, num_skills, "qf")

    qf = ContinuousMLPQFunction(env_spec=qf_env,
                                hidden_sizes=[net_size, net_size, net_size])

    vf_env = Kant.get_env_spec(env[0](), latent_size, num_skills, 'vf')
    vf = ContinuousMLPQFunction(env_spec=vf_env,
                                hidden_sizes=[net_size, net_size, net_size])

    controller_policy_env = Kant.get_env_spec(env[0](),
                                              latent_size,
                                              module="controller_policy",
                                              num_skills=num_skills)

    controller_policy = CategoricalMLPPolicy(
        env_spec=controller_policy_env,
        hidden_sizes=[net_size, net_size],
        hidden_nonlinearity=functional.relu)

    kant = Kant(
        env=env,
        skill_env=skill_env,
        controller_policy=controller_policy,
        skill_actor=skill_actor,
        qf=qf,
        vf=vf,
        num_skills=num_skills,
        num_train_tasks=num_train_tasks,
        num_test_tasks=num_test_tasks,
        is_encoder_recurrent=is_encoder_recurrent,
        latent_dim=latent_size,
        encoder_hidden_sizes=encoder_hidden_sizes,
        meta_batch_size=meta_batch_size,
        num_initial_steps=num_initial_steps,
        num_tasks_sample=num_tasks_sample,
        num_steps_per_epoch=num_steps_per_epoch,
        num_steps_prior=num_steps_prior,  # num_steps_posterior
        num_extra_rl_steps_posterior=num_extra_rl_steps_posterior,
        num_skills_reason_steps=num_skills_reason_steps,
        num_skills_sample=num_skills_sample,
        batch_size=batch_size,
        embedding_batch_size=embedding_batch_size,
        embedding_mini_batch_size=embedding_mini_batch_size,
        max_path_length=max_path_length,
        skills_reason_reward_scale=skills_reason_reward_scale,
        tasks_adapt_reward_scale=tasks_adapt_reward_scale)

    tu.set_gpu_mode(use_gpu, gpu_id=0)
    if use_gpu:
        kant.to()

    worker_args = dict(num_skills=num_skills,
                       skill_actor_class=type(skill_actor),
                       controller_class=OpenContextConditionedControllerPolicy,
                       deterministic=False,
                       accum_context=True)

    runner.setup(algo=kant,
                 env=env[0](),
                 sampler_cls=LocalSkillSampler,
                 sampler_args=dict(max_path_length=max_path_length),
                 n_workers=1,
                 worker_class=KantWorker,
                 worker_args=worker_args)

    average_returns = runner.train(n_epochs=num_epochs, batch_size=batch_size)
    runner.save(num_epochs - 1)

    return average_returns