def sample_paths(policy_params, max_samples, max_path_length=np.inf, env_params=None, scope=None): """ :param policy_params: parameters for the policy. This will be updated on each worker process :param max_samples: desired maximum number of samples to be collected. The actual number of collected samples might be greater since all trajectories will be rolled out either until termination or until max_path_length is reached :param max_path_length: horizon / maximum length of a single trajectory :return: a list of collected paths """ singleton_pool.run_each(_worker_set_policy_params, [(policy_params, scope)] * singleton_pool.n_parallel) if env_params is not None: singleton_pool.run_each(_worker_set_env_params, [(env_params, scope)] * singleton_pool.n_parallel) return singleton_pool.run_collect(_worker_collect_one_path, threshold=max_samples, args=(max_path_length, scope), show_prog_bar=True)
def sample_paths(self, policy_params, max_samples, max_path_length, env_params=None, inference_params=None, scope=None): singleton_pool.run_each( parallel_sampler._worker_set_policy_params, [(policy_params, scope)] * singleton_pool.n_parallel, ) singleton_pool.run_each( _worker_set_inference_params, [(inference_params, scope)] * singleton_pool.n_parallel, ) # if env_params: # singleton_pool.run_each( # parallel_sampler._worker_set_env_params, # [(env_params, scope)] * singleton_pool.n_parallel, # ) return singleton_pool.run_collect( _worker_collect_one_path, threshold=max_samples, args=(max_path_length, scope), show_prog_bar=True, )
def sample_paths(policy_params, max_samples, max_path_length=np.inf, env_params=None, scope=None): """Sample paths from each worker. Parameters ---------- policy_params : parameters for the policy. This will be updated on each worker process max_samples : int desired maximum number of samples to be collected. The actual number of collected samples might be greater since all trajectories will be rolled out either until termination or until max_path_length is reached max_path_length : int, optional horizon / maximum length of a single trajectory scope : str Scope for identifying the algorithm. Must be specified if running multiple algorithms simultaneously, each using different environments and policies. """ singleton_pool.run_each(_worker_set_policy_params, [(policy_params, scope)] * singleton_pool.n_parallel) if env_params is not None: singleton_pool.run_each(_worker_set_env_params, [(env_params, scope)] * singleton_pool.n_parallel) return singleton_pool.run_collect(_worker_collect_one_path, threshold=max_samples, args=(max_path_length, scope), show_prog_bar=True)