def test_dist(self):
     model = CategoricalGRUModel(output_dim=1, hidden_dim=1)
     step_hidden_var = tf.compat.v1.placeholder(shape=(self.batch_size, 1),
                                                name='step_hidden',
                                                dtype=tf.float32)
     dist = model.build(self.input_var, self.step_input_var,
                        step_hidden_var).dist
     assert isinstance(dist, tfp.distributions.OneHotCategorical)
    def test_is_pickleable(self):
        model = CategoricalGRUModel(output_dim=1, hidden_dim=1)
        step_hidden_var = tf.compat.v1.placeholder(shape=(self.batch_size, 1),
                                                   name='step_hidden',
                                                   dtype=tf.float32)
        network = model.build(self.input_var, self.step_input_var,
                              step_hidden_var)
        dist = network.dist
        # assign bias to all one
        with tf.compat.v1.variable_scope('CategoricalGRUModel/gru',
                                         reuse=True):
            init_hidden = tf.compat.v1.get_variable('initial_hidden')

        init_hidden.load(tf.ones_like(init_hidden).eval())

        hidden = np.zeros((self.batch_size, 1))

        outputs1 = self.sess.run(dist.probs,
                                 feed_dict={self.input_var: self.obs_inputs})
        output1 = self.sess.run(
            [network.step_output, network.step_hidden],
            # yapf: disable
            feed_dict={
                self.step_input_var: self.obs_input,
                step_hidden_var: hidden
            })
        # yapf: enable
        h = pickle.dumps(model)
        with tf.compat.v1.Session(graph=tf.Graph()) as sess:
            input_var = tf.compat.v1.placeholder(tf.float32, shape=(None, 5))
            model_pickled = pickle.loads(h)

            input_var = tf.compat.v1.placeholder(tf.float32,
                                                 shape=(None, None,
                                                        self.feature_shape),
                                                 name='input')
            step_input_var = tf.compat.v1.placeholder(
                tf.float32, shape=(None, self.feature_shape), name='input')
            step_hidden_var = tf.compat.v1.placeholder(shape=(self.batch_size,
                                                              1),
                                                       name='initial_hidden',
                                                       dtype=tf.float32)

            network2 = model_pickled.build(input_var, step_input_var,
                                           step_hidden_var)
            dist2 = network2.dist
            outputs2 = sess.run(dist2.probs,
                                feed_dict={input_var: self.obs_inputs})
            output2 = sess.run(
                [network2.step_output, network2.step_hidden],
                # yapf: disable
                feed_dict={
                    step_input_var: self.obs_input,
                    step_hidden_var: hidden
                })
            # yapf: enable
            assert np.array_equal(outputs1, outputs2)
            assert np.array_equal(output1, output2)
示例#3
0
 def test_output_nonlinearity(self):
     model = CategoricalGRUModel(output_dim=1,
                                 hidden_dim=4,
                                 output_nonlinearity=lambda x: x / 2)
     obs_ph = tf.compat.v1.placeholder(tf.float32, shape=(None, None, 1))
     step_obs_ph = tf.compat.v1.placeholder(tf.float32, shape=(None, 1))
     step_hidden_ph = tf.compat.v1.placeholder(tf.float32, shape=(None, 4))
     obs = np.ones((1, 1, 1))
     dist, _, _, _ = model.build(obs_ph, step_obs_ph, step_hidden_ph)
     probs = tf.compat.v1.get_default_session().run(dist.probs,
                                                    feed_dict={obs_ph: obs})
     assert probs == [0.5]
 def test_output_normalized(self, output_dim):
     model = CategoricalGRUModel(output_dim=output_dim, hidden_dim=4)
     obs_ph = tf.compat.v1.placeholder(tf.float32,
                                       shape=(None, None, output_dim))
     step_obs_ph = tf.compat.v1.placeholder(tf.float32,
                                            shape=(None, output_dim))
     step_hidden_ph = tf.compat.v1.placeholder(tf.float32, shape=(None, 4))
     obs = np.ones((1, 1, output_dim))
     dist = model.build(obs_ph, step_obs_ph, step_hidden_ph).dist
     probs = tf.compat.v1.get_default_session().run(tf.reduce_sum(
         dist.probs),
                                                    feed_dict={obs_ph: obs})
     assert np.isclose(probs, 1.0)
    def __init__(self,
                 env_spec,
                 name='CategoricalGRUPolicy',
                 hidden_dim=32,
                 hidden_nonlinearity=tf.nn.tanh,
                 hidden_w_init=tf.initializers.glorot_uniform(),
                 hidden_b_init=tf.zeros_initializer(),
                 recurrent_nonlinearity=tf.nn.sigmoid,
                 recurrent_w_init=tf.initializers.glorot_uniform(),
                 output_nonlinearity=tf.nn.softmax,
                 output_w_init=tf.initializers.glorot_uniform(),
                 output_b_init=tf.zeros_initializer(),
                 hidden_state_init=tf.zeros_initializer(),
                 hidden_state_init_trainable=False,
                 state_include_action=True,
                 layer_normalization=False):
        if not isinstance(env_spec.action_space, akro.Discrete):
            raise ValueError('CategoricalGRUPolicy only works'
                             'with akro.Discrete action space.')

        super().__init__(name, env_spec)
        self._obs_dim = env_spec.observation_space.flat_dim
        self._action_dim = env_spec.action_space.n

        self._hidden_dim = hidden_dim
        self._hidden_nonlinearity = hidden_nonlinearity
        self._hidden_w_init = hidden_w_init
        self._hidden_b_init = hidden_b_init
        self._recurrent_nonlinearity = recurrent_nonlinearity
        self._recurrent_w_init = recurrent_w_init
        self._output_nonlinearity = output_nonlinearity
        self._output_w_init = output_w_init
        self._output_b_init = output_b_init
        self._hidden_state_init = hidden_state_init
        self._hidden_state_init_trainable = hidden_state_init_trainable
        self._layer_normalization = layer_normalization
        self._state_include_action = state_include_action

        if state_include_action:
            self._input_dim = self._obs_dim + self._action_dim
        else:
            self._input_dim = self._obs_dim

        self._f_step_prob = None

        self.model = CategoricalGRUModel(
            output_dim=self._action_dim,
            hidden_dim=self._hidden_dim,
            name='prob_network',
            hidden_nonlinearity=hidden_nonlinearity,
            hidden_w_init=hidden_w_init,
            hidden_b_init=hidden_b_init,
            recurrent_nonlinearity=recurrent_nonlinearity,
            recurrent_w_init=recurrent_w_init,
            hidden_state_init=hidden_state_init,
            hidden_state_init_trainable=hidden_state_init_trainable,
            output_nonlinearity=output_nonlinearity,
            output_w_init=output_w_init,
            output_b_init=output_b_init,
            layer_normalization=layer_normalization)

        self._prev_actions = None
        self._prev_hiddens = None