示例#1
0
    def test_compute_advantages(self):
        """Tests compute_advantages function in utils."""
        discount = 1
        gae_lambda = 1
        max_len = 1
        rewards = tf.compat.v1.placeholder(dtype=tf.float32,
                                           name='reward',
                                           shape=[None, None])
        baselines = tf.compat.v1.placeholder(dtype=tf.float32,
                                             name='baseline',
                                             shape=[None, None])
        adv = compute_advantages(discount, gae_lambda, max_len, baselines,
                                 rewards)

        # Set up inputs and outputs
        rewards_val = np.ones(shape=[2, 1])
        baselines_val = np.zeros(shape=[2, 1])
        desired_val = np.array([1., 1.])

        adv = self.sess.run(adv,
                            feed_dict={
                                rewards: rewards_val,
                                baselines: baselines_val,
                            })

        assert np.array_equal(adv, desired_val)
示例#2
0
    def _build_policy_loss(self, i):
        """Build policy loss and other output tensors.

        Args:
            i (namedtuple): Collection of variables to compute policy loss.

        Returns:
            tf.Tensor: Policy loss.
            tf.Tensor: Mean policy KL divergence.

        """
        # pylint: disable=too-many-statements
        self._policy_network, self._encoder_network = (self.policy.build(
            i.augmented_obs_var, i.task_var, name='loss_policy'))
        self._old_policy_network, self._old_encoder_network = (
            self._old_policy.build(i.augmented_obs_var,
                                   i.task_var,
                                   name='loss_old_policy'))
        self._infer_network = self._inference.build(i.augmented_traj_var,
                                                    name='loss_infer')
        self._old_infer_network = self._old_inference.build(
            i.augmented_traj_var, name='loss_old_infer')

        pol_dist = self._policy_network.dist
        old_pol_dist = self._old_policy_network.dist

        # Entropy terms
        encoder_entropy, inference_ce, policy_entropy = (
            self._build_entropy_terms(i))

        # Augment the path rewards with entropy terms
        with tf.name_scope('augmented_rewards'):
            rewards = (i.reward_var -
                       (self.inference_ce_coeff * inference_ce) +
                       (self._policy_ent_coeff * policy_entropy))

        with tf.name_scope('policy_loss'):
            with tf.name_scope('advantages'):
                adv = compute_advantages(self._discount,
                                         self._gae_lambda,
                                         self.max_episode_length,
                                         i.baseline_var,
                                         rewards,
                                         name='advantages')
                adv = tf.reshape(adv, [-1, self.max_episode_length])

            # Optionally normalize advantages
            eps = tf.constant(1e-8, dtype=tf.float32)
            if self._center_adv:
                adv = center_advs(adv, axes=[0], eps=eps)

            if self._positive_adv:
                adv = positive_advs(adv, eps)

            # Calculate loss function and KL divergence
            with tf.name_scope('kl'):
                kl = old_pol_dist.kl_divergence(pol_dist)
                pol_mean_kl = tf.reduce_mean(kl)

            ll = pol_dist.log_prob(i.action_var, name='log_likelihood')

            # Calculate surrogate loss
            with tf.name_scope('surr_loss'):
                old_ll = old_pol_dist.log_prob(i.action_var)
                old_ll = tf.stop_gradient(old_ll)
                # Clip early to avoid overflow
                lr = tf.exp(
                    tf.minimum(ll - old_ll, np.log(1 + self._lr_clip_range)))

                surrogate = lr * adv

                surrogate = tf.debugging.check_numerics(surrogate,
                                                        message='surrogate')

            # Finalize objective function
            with tf.name_scope('loss'):
                lr_clip = tf.clip_by_value(lr,
                                           1 - self._lr_clip_range,
                                           1 + self._lr_clip_range,
                                           name='lr_clip')
                surr_clip = lr_clip * adv
                obj = tf.minimum(surrogate, surr_clip, name='surr_obj')
                obj = tf.boolean_mask(obj, i.valid_var)
                # Maximize E[surrogate objective] by minimizing
                # -E_t[surrogate objective]
                loss = -tf.reduce_mean(obj)

                # Encoder entropy bonus
                loss -= self.encoder_ent_coeff * encoder_entropy

            encoder_mean_kl = self._build_encoder_kl()

            # Diagnostic functions
            self._f_policy_kl = tf.compat.v1.get_default_session(
            ).make_callable(pol_mean_kl,
                            feed_list=flatten_inputs(self._policy_opt_inputs))

            self._f_rewards = tf.compat.v1.get_default_session().make_callable(
                rewards, feed_list=flatten_inputs(self._policy_opt_inputs))

            returns = discounted_returns(self._discount,
                                         self.max_episode_length,
                                         rewards,
                                         name='returns')
            self._f_returns = tf.compat.v1.get_default_session().make_callable(
                returns, feed_list=flatten_inputs(self._policy_opt_inputs))

        return loss, pol_mean_kl, encoder_mean_kl
示例#3
0
    def _build_policy_loss(self, i):
        """Build policy loss and other output tensors.

        Args:
            i (namedtuple): Collection of variables to compute policy loss.

        Returns:
            tf.Tensor: Policy loss.
            tf.Tensor: Mean policy KL divergence.

        """
        policy_entropy = self._build_entropy_term(i)
        rewards = i.reward_var

        if self._maximum_entropy:
            with tf.name_scope('augmented_rewards'):
                rewards = i.reward_var + (self._policy_ent_coeff *
                                          policy_entropy)

        with tf.name_scope('policy_loss'):
            adv = compute_advantages(self._discount,
                                     self._gae_lambda,
                                     self.max_episode_length,
                                     i.baseline_var,
                                     rewards,
                                     name='adv')

            adv = tf.reshape(adv, [-1, self.max_episode_length])
            # Optionally normalize advantages
            eps = tf.constant(1e-8, dtype=tf.float32)
            if self._center_adv:
                adv = center_advs(adv, axes=[0], eps=eps)

            if self._positive_adv:
                adv = positive_advs(adv, eps)

            old_policy_dist = self._old_policy_network.dist
            policy_dist = self._policy_network.dist

            with tf.name_scope('kl'):
                kl = old_policy_dist.kl_divergence(policy_dist)
                pol_mean_kl = tf.reduce_mean(kl)

            # Calculate vanilla loss
            with tf.name_scope('vanilla_loss'):
                ll = policy_dist.log_prob(i.action_var, name='log_likelihood')
                vanilla = ll * adv

            # Calculate surrogate loss
            with tf.name_scope('surrogate_loss'):
                lr = tf.exp(ll - old_policy_dist.log_prob(i.action_var))
                surrogate = lr * adv

            # Finalize objective function
            with tf.name_scope('loss'):
                if self._pg_loss == 'vanilla':
                    # VPG uses the vanilla objective
                    obj = tf.identity(vanilla, name='vanilla_obj')
                elif self._pg_loss == 'surrogate':
                    # TRPO uses the standard surrogate objective
                    obj = tf.identity(surrogate, name='surr_obj')
                elif self._pg_loss == 'surrogate_clip':
                    lr_clip = tf.clip_by_value(lr,
                                               1 - self._lr_clip_range,
                                               1 + self._lr_clip_range,
                                               name='lr_clip')
                    surr_clip = lr_clip * adv
                    obj = tf.minimum(surrogate, surr_clip, name='surr_obj')

                if self._entropy_regularzied:
                    obj += self._policy_ent_coeff * policy_entropy

                # filter only the valid values
                obj = tf.boolean_mask(obj, i.valid_var)
                # Maximize E[surrogate objective] by minimizing
                # -E_t[surrogate objective]
                loss = -tf.reduce_mean(obj)

            # Diagnostic functions
            self._f_policy_kl = tf.compat.v1.get_default_session(
            ).make_callable(pol_mean_kl,
                            feed_list=flatten_inputs(self._policy_opt_inputs))

            self._f_rewards = tf.compat.v1.get_default_session().make_callable(
                rewards, feed_list=flatten_inputs(self._policy_opt_inputs))

            returns = discounted_returns(self._discount,
                                         self.max_episode_length, rewards)
            self._f_returns = tf.compat.v1.get_default_session().make_callable(
                returns, feed_list=flatten_inputs(self._policy_opt_inputs))

            return loss, pol_mean_kl